Metamath Proof Explorer


Theorem cncfiooiccre

Description: A continuous function F on an open interval ( A (,) B ) can be extended to a continuous function G on the corresponding closed interval, if it has a finite right limit R in A and a finite left limit L in B . F is assumed to be real-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfiooiccre.x x φ
cncfiooiccre.g G = x A B if x = A R if x = B L F x
cncfiooiccre.a φ A
cncfiooiccre.b φ B
cncfiooiccre.altb φ A < B
cncfiooiccre.f φ F : A B cn
cncfiooiccre.l φ L F lim B
cncfiooiccre.r φ R F lim A
Assertion cncfiooiccre φ G : A B cn

Proof

Step Hyp Ref Expression
1 cncfiooiccre.x x φ
2 cncfiooiccre.g G = x A B if x = A R if x = B L F x
3 cncfiooiccre.a φ A
4 cncfiooiccre.b φ B
5 cncfiooiccre.altb φ A < B
6 cncfiooiccre.f φ F : A B cn
7 cncfiooiccre.l φ L F lim B
8 cncfiooiccre.r φ R F lim A
9 iftrue x = A if x = A R if x = B L F x = R
10 9 adantl φ x = A if x = A R if x = B L F x = R
11 cncff F : A B cn F : A B
12 6 11 syl φ F : A B
13 ioosscn A B
14 13 a1i φ A B
15 eqid TopOpen fld = TopOpen fld
16 4 rexrd φ B *
17 15 16 3 5 lptioo1cn φ A limPt TopOpen fld A B
18 12 14 17 8 limcrecl φ R
19 18 adantr φ x = A R
20 10 19 eqeltrd φ x = A if x = A R if x = B L F x
21 20 adantlr φ x A B x = A if x = A R if x = B L F x
22 iffalse ¬ x = A if x = A R if x = B L F x = if x = B L F x
23 iftrue x = B if x = B L F x = L
24 22 23 sylan9eq ¬ x = A x = B if x = A R if x = B L F x = L
25 24 adantll φ ¬ x = A x = B if x = A R if x = B L F x = L
26 3 rexrd φ A *
27 15 26 4 5 lptioo2cn φ B limPt TopOpen fld A B
28 12 14 27 7 limcrecl φ L
29 28 ad2antrr φ ¬ x = A x = B L
30 25 29 eqeltrd φ ¬ x = A x = B if x = A R if x = B L F x
31 30 adantllr φ x A B ¬ x = A x = B if x = A R if x = B L F x
32 iffalse ¬ x = B if x = B L F x = F x
33 22 32 sylan9eq ¬ x = A ¬ x = B if x = A R if x = B L F x = F x
34 33 adantll φ x A B ¬ x = A ¬ x = B if x = A R if x = B L F x = F x
35 12 ad3antrrr φ x A B ¬ x = A ¬ x = B F : A B
36 26 ad3antrrr φ x A B ¬ x = A ¬ x = B A *
37 16 ad3antrrr φ x A B ¬ x = A ¬ x = B B *
38 3 adantr φ x A B A
39 4 adantr φ x A B B
40 simpr φ x A B x A B
41 eliccre A B x A B x
42 38 39 40 41 syl3anc φ x A B x
43 42 ad2antrr φ x A B ¬ x = A ¬ x = B x
44 3 ad2antrr φ x A B ¬ x = A A
45 42 adantr φ x A B ¬ x = A x
46 26 ad2antrr φ x A B ¬ x = A A *
47 16 ad2antrr φ x A B ¬ x = A B *
48 40 adantr φ x A B ¬ x = A x A B
49 iccgelb A * B * x A B A x
50 46 47 48 49 syl3anc φ x A B ¬ x = A A x
51 neqne ¬ x = A x A
52 51 adantl φ x A B ¬ x = A x A
53 44 45 50 52 leneltd φ x A B ¬ x = A A < x
54 53 adantr φ x A B ¬ x = A ¬ x = B A < x
55 42 adantr φ x A B ¬ x = B x
56 4 ad2antrr φ x A B ¬ x = B B
57 26 ad2antrr φ x A B ¬ x = B A *
58 16 ad2antrr φ x A B ¬ x = B B *
59 40 adantr φ x A B ¬ x = B x A B
60 iccleub A * B * x A B x B
61 57 58 59 60 syl3anc φ x A B ¬ x = B x B
62 neqne ¬ x = B x B
63 62 necomd ¬ x = B B x
64 63 adantl φ x A B ¬ x = B B x
65 55 56 61 64 leneltd φ x A B ¬ x = B x < B
66 65 adantlr φ x A B ¬ x = A ¬ x = B x < B
67 36 37 43 54 66 eliood φ x A B ¬ x = A ¬ x = B x A B
68 35 67 ffvelrnd φ x A B ¬ x = A ¬ x = B F x
69 34 68 eqeltrd φ x A B ¬ x = A ¬ x = B if x = A R if x = B L F x
70 31 69 pm2.61dan φ x A B ¬ x = A if x = A R if x = B L F x
71 21 70 pm2.61dan φ x A B if x = A R if x = B L F x
72 71 2 fmptd φ G : A B
73 ax-resscn
74 ssid
75 cncfss A B cn A B cn
76 73 74 75 mp2an A B cn A B cn
77 76 6 sseldi φ F : A B cn
78 1 2 3 4 77 7 8 cncfiooicc φ G : A B cn
79 cncffvrn G : A B cn G : A B cn G : A B
80 73 78 79 sylancr φ G : A B cn G : A B
81 72 80 mpbird φ G : A B cn