Step |
Hyp |
Ref |
Expression |
1 |
|
cncfiooiccre.x |
|
2 |
|
cncfiooiccre.g |
|
3 |
|
cncfiooiccre.a |
|
4 |
|
cncfiooiccre.b |
|
5 |
|
cncfiooiccre.altb |
|
6 |
|
cncfiooiccre.f |
|
7 |
|
cncfiooiccre.l |
|
8 |
|
cncfiooiccre.r |
|
9 |
|
iftrue |
|
10 |
9
|
adantl |
|
11 |
|
cncff |
|
12 |
6 11
|
syl |
|
13 |
|
ioosscn |
|
14 |
13
|
a1i |
|
15 |
|
eqid |
|
16 |
4
|
rexrd |
|
17 |
15 16 3 5
|
lptioo1cn |
|
18 |
12 14 17 8
|
limcrecl |
|
19 |
18
|
adantr |
|
20 |
10 19
|
eqeltrd |
|
21 |
20
|
adantlr |
|
22 |
|
iffalse |
|
23 |
|
iftrue |
|
24 |
22 23
|
sylan9eq |
|
25 |
24
|
adantll |
|
26 |
3
|
rexrd |
|
27 |
15 26 4 5
|
lptioo2cn |
|
28 |
12 14 27 7
|
limcrecl |
|
29 |
28
|
ad2antrr |
|
30 |
25 29
|
eqeltrd |
|
31 |
30
|
adantllr |
|
32 |
|
iffalse |
|
33 |
22 32
|
sylan9eq |
|
34 |
33
|
adantll |
|
35 |
12
|
ad3antrrr |
|
36 |
26
|
ad3antrrr |
|
37 |
16
|
ad3antrrr |
|
38 |
3
|
adantr |
|
39 |
4
|
adantr |
|
40 |
|
simpr |
|
41 |
|
eliccre |
|
42 |
38 39 40 41
|
syl3anc |
|
43 |
42
|
ad2antrr |
|
44 |
3
|
ad2antrr |
|
45 |
42
|
adantr |
|
46 |
26
|
ad2antrr |
|
47 |
16
|
ad2antrr |
|
48 |
40
|
adantr |
|
49 |
|
iccgelb |
|
50 |
46 47 48 49
|
syl3anc |
|
51 |
|
neqne |
|
52 |
51
|
adantl |
|
53 |
44 45 50 52
|
leneltd |
|
54 |
53
|
adantr |
|
55 |
42
|
adantr |
|
56 |
4
|
ad2antrr |
|
57 |
26
|
ad2antrr |
|
58 |
16
|
ad2antrr |
|
59 |
40
|
adantr |
|
60 |
|
iccleub |
|
61 |
57 58 59 60
|
syl3anc |
|
62 |
|
neqne |
|
63 |
62
|
necomd |
|
64 |
63
|
adantl |
|
65 |
55 56 61 64
|
leneltd |
|
66 |
65
|
adantlr |
|
67 |
36 37 43 54 66
|
eliood |
|
68 |
35 67
|
ffvelrnd |
|
69 |
34 68
|
eqeltrd |
|
70 |
31 69
|
pm2.61dan |
|
71 |
21 70
|
pm2.61dan |
|
72 |
71 2
|
fmptd |
|
73 |
|
ax-resscn |
|
74 |
|
ssid |
|
75 |
|
cncfss |
|
76 |
73 74 75
|
mp2an |
|
77 |
76 6
|
sselid |
|
78 |
1 2 3 4 77 7 8
|
cncfiooicc |
|
79 |
|
cncffvrn |
|
80 |
73 78 79
|
sylancr |
|
81 |
72 80
|
mpbird |
|