Metamath Proof Explorer


Theorem cncfmpt1f

Description: Composition of continuous functions. -cn-> analogue of cnmpt11f . (Contributed by Mario Carneiro, 3-Sep-2014)

Ref Expression
Hypotheses cncfmpt1f.1 φ F : cn
cncfmpt1f.2 φ x X A : X cn
Assertion cncfmpt1f φ x X F A : X cn

Proof

Step Hyp Ref Expression
1 cncfmpt1f.1 φ F : cn
2 cncfmpt1f.2 φ x X A : X cn
3 cncff x X A : X cn x X A : X
4 2 3 syl φ x X A : X
5 eqid x X A = x X A
6 5 fmpt x X A x X A : X
7 4 6 sylibr φ x X A
8 eqidd φ x X A = x X A
9 cncff F : cn F :
10 1 9 syl φ F :
11 10 feqmptd φ F = y F y
12 fveq2 y = A F y = F A
13 7 8 11 12 fmptcof φ F x X A = x X F A
14 2 1 cncfco φ F x X A : X cn
15 13 14 eqeltrrd φ x X F A : X cn