Metamath Proof Explorer


Theorem cncfmpt2ss

Description: Composition of continuous functions in a subset. (Contributed by Mario Carneiro, 17-May-2016)

Ref Expression
Hypotheses cncfmpt2ss.1 J = TopOpen fld
cncfmpt2ss.2 F J × t J Cn J
cncfmpt2ss.3 φ x X A : X cn S
cncfmpt2ss.4 φ x X B : X cn S
cncfmpt2ss.5 S
cncfmpt2ss.6 A S B S A F B S
Assertion cncfmpt2ss φ x X A F B : X cn S

Proof

Step Hyp Ref Expression
1 cncfmpt2ss.1 J = TopOpen fld
2 cncfmpt2ss.2 F J × t J Cn J
3 cncfmpt2ss.3 φ x X A : X cn S
4 cncfmpt2ss.4 φ x X B : X cn S
5 cncfmpt2ss.5 S
6 cncfmpt2ss.6 A S B S A F B S
7 cncff x X A : X cn S x X A : X S
8 3 7 syl φ x X A : X S
9 8 fvmptelrn φ x X A S
10 cncff x X B : X cn S x X B : X S
11 4 10 syl φ x X B : X S
12 11 fvmptelrn φ x X B S
13 9 12 6 syl2anc φ x X A F B S
14 13 fmpttd φ x X A F B : X S
15 2 a1i φ F J × t J Cn J
16 ssid
17 cncfss S X cn S X cn
18 5 16 17 mp2an X cn S X cn
19 18 3 sselid φ x X A : X cn
20 18 4 sselid φ x X B : X cn
21 1 15 19 20 cncfmpt2f φ x X A F B : X cn
22 cncffvrn S x X A F B : X cn x X A F B : X cn S x X A F B : X S
23 5 21 22 sylancr φ x X A F B : X cn S x X A F B : X S
24 14 23 mpbird φ x X A F B : X cn S