Metamath Proof Explorer


Theorem cncfmptc

Description: A constant function is a continuous function on CC . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 7-Sep-2015)

Ref Expression
Assertion cncfmptc A T S T x S A : S cn T

Proof

Step Hyp Ref Expression
1 eqid TopOpen fld = TopOpen fld
2 1 cnfldtopon TopOpen fld TopOn
3 simp2 A T S T S
4 resttopon TopOpen fld TopOn S TopOpen fld 𝑡 S TopOn S
5 2 3 4 sylancr A T S T TopOpen fld 𝑡 S TopOn S
6 simp3 A T S T T
7 resttopon TopOpen fld TopOn T TopOpen fld 𝑡 T TopOn T
8 2 6 7 sylancr A T S T TopOpen fld 𝑡 T TopOn T
9 simp1 A T S T A T
10 5 8 9 cnmptc A T S T x S A TopOpen fld 𝑡 S Cn TopOpen fld 𝑡 T
11 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
12 eqid TopOpen fld 𝑡 T = TopOpen fld 𝑡 T
13 1 11 12 cncfcn S T S cn T = TopOpen fld 𝑡 S Cn TopOpen fld 𝑡 T
14 13 3adant1 A T S T S cn T = TopOpen fld 𝑡 S Cn TopOpen fld 𝑡 T
15 10 14 eleqtrrd A T S T x S A : S cn T