Metamath Proof Explorer


Theorem cncfmptid

Description: The identity function is a continuous function on CC . (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 17-May-2016)

Ref Expression
Assertion cncfmptid S T T x S x : S cn T

Proof

Step Hyp Ref Expression
1 cncfss S T T S cn S S cn T
2 eqid TopOpen fld = TopOpen fld
3 2 cnfldtopon TopOpen fld TopOn
4 sstr S T T S
5 resttopon TopOpen fld TopOn S TopOpen fld 𝑡 S TopOn S
6 3 4 5 sylancr S T T TopOpen fld 𝑡 S TopOn S
7 6 cnmptid S T T x S x TopOpen fld 𝑡 S Cn TopOpen fld 𝑡 S
8 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
9 2 8 8 cncfcn S S S cn S = TopOpen fld 𝑡 S Cn TopOpen fld 𝑡 S
10 4 4 9 syl2anc S T T S cn S = TopOpen fld 𝑡 S Cn TopOpen fld 𝑡 S
11 7 10 eleqtrrd S T T x S x : S cn S
12 1 11 sseldd S T T x S x : S cn T