Metamath Proof Explorer


Theorem cncfmptss

Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses cncfmptss.1 _ x F
cncfmptss.2 φ F : A cn B
cncfmptss.3 φ C A
Assertion cncfmptss φ x C F x : C cn B

Proof

Step Hyp Ref Expression
1 cncfmptss.1 _ x F
2 cncfmptss.2 φ F : A cn B
3 cncfmptss.3 φ C A
4 3 resmptd φ y A F y C = y C F y
5 cncff F : A cn B F : A B
6 2 5 syl φ F : A B
7 6 feqmptd φ F = y A F y
8 7 reseq1d φ F C = y A F y C
9 nfcv _ y F
10 nfcv _ y x
11 9 10 nffv _ y F x
12 nfcv _ x y
13 1 12 nffv _ x F y
14 fveq2 x = y F x = F y
15 11 13 14 cbvmpt x C F x = y C F y
16 15 a1i φ x C F x = y C F y
17 4 8 16 3eqtr4rd φ x C F x = F C
18 rescncf C A F : A cn B F C : C cn B
19 3 2 18 sylc φ F C : C cn B
20 17 19 eqeltrd φ x C F x : C cn B