Metamath Proof Explorer


Theorem cncfmptssg

Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. This theorem generalizes cncfmptss because it allows to establish a subset for the codomain also. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfmptssg.2 F = x A E
cncfmptssg.3 φ F : A cn B
cncfmptssg.4 φ C A
cncfmptssg.5 φ D B
cncfmptssg.6 φ x C E D
Assertion cncfmptssg φ x C E : C cn D

Proof

Step Hyp Ref Expression
1 cncfmptssg.2 F = x A E
2 cncfmptssg.3 φ F : A cn B
3 cncfmptssg.4 φ C A
4 cncfmptssg.5 φ D B
5 cncfmptssg.6 φ x C E D
6 5 fmpttd φ x C E : C D
7 cncfrss2 F : A cn B B
8 2 7 syl φ B
9 4 8 sstrd φ D
10 3 sselda φ x C x A
11 1 fvmpt2 x A E D F x = E
12 10 5 11 syl2anc φ x C F x = E
13 12 mpteq2dva φ x C F x = x C E
14 nfmpt1 _ x x A E
15 1 14 nfcxfr _ x F
16 15 2 3 cncfmptss φ x C F x : C cn B
17 13 16 eqeltrrd φ x C E : C cn B
18 cncffvrn D x C E : C cn B x C E : C cn D x C E : C D
19 9 17 18 syl2anc φ x C E : C cn D x C E : C D
20 6 19 mpbird φ x C E : C cn D