Metamath Proof Explorer


Theorem cncfperiod

Description: A periodic continuous function stays continuous if the domain is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfperiod.a φ A
cncfperiod.t φ T
cncfperiod.b B = x | y A x = y + T
cncfperiod.f φ F : dom F
cncfperiod.cssdmf φ B dom F
cncfperiod.fper φ x A F x + T = F x
cncfperiod.fcn φ F A : A cn
Assertion cncfperiod φ F B : B cn

Proof

Step Hyp Ref Expression
1 cncfperiod.a φ A
2 cncfperiod.t φ T
3 cncfperiod.b B = x | y A x = y + T
4 cncfperiod.f φ F : dom F
5 cncfperiod.cssdmf φ B dom F
6 cncfperiod.fper φ x A F x + T = F x
7 cncfperiod.fcn φ F A : A cn
8 4 5 fssresd φ F B : B
9 fvoveq1 a = x T a b = x - T - b
10 9 breq1d a = x T a b < z x - T - b < z
11 10 imbrov2fvoveq a = x T a b < z F A a F A b < w x - T - b < z F A x T F A b < w
12 11 rexralbidv a = x T z + b A a b < z F A a F A b < w z + b A x - T - b < z F A x T F A b < w
13 12 ralbidv a = x T w + z + b A a b < z F A a F A b < w w + z + b A x - T - b < z F A x T F A b < w
14 7 adantr φ x B F A : A cn
15 1 adantr φ x B A
16 ssidd φ x B
17 elcncf A F A : A cn F A : A a A w + z + b A a b < z F A a F A b < w
18 15 16 17 syl2anc φ x B F A : A cn F A : A a A w + z + b A a b < z F A a F A b < w
19 14 18 mpbid φ x B F A : A a A w + z + b A a b < z F A a F A b < w
20 19 simprd φ x B a A w + z + b A a b < z F A a F A b < w
21 simpr φ x B x B
22 21 3 eleqtrdi φ x B x x | y A x = y + T
23 rabid x x | y A x = y + T x y A x = y + T
24 22 23 sylib φ x B x y A x = y + T
25 24 simprd φ x B y A x = y + T
26 oveq1 x = y + T x T = y + T - T
27 26 3ad2ant3 φ x B y A x = y + T x T = y + T - T
28 1 sselda φ y A y
29 2 recnd φ T
30 29 adantr φ y A T
31 28 30 pncand φ y A y + T - T = y
32 31 adantlr φ x B y A y + T - T = y
33 32 3adant3 φ x B y A x = y + T y + T - T = y
34 27 33 eqtrd φ x B y A x = y + T x T = y
35 simp2 φ x B y A x = y + T y A
36 34 35 eqeltrd φ x B y A x = y + T x T A
37 36 rexlimdv3a φ x B y A x = y + T x T A
38 25 37 mpd φ x B x T A
39 13 20 38 rspcdva φ x B w + z + b A x - T - b < z F A x T F A b < w
40 39 adantrr φ x B w + w + z + b A x - T - b < z F A x T F A b < w
41 simprr φ x B w + w +
42 rspa w + z + b A x - T - b < z F A x T F A b < w w + z + b A x - T - b < z F A x T F A b < w
43 40 41 42 syl2anc φ x B w + z + b A x - T - b < z F A x T F A b < w
44 simpl1l φ x B w + z + b A x - T - b < z F A x T F A b < w v B φ
45 44 adantr φ x B w + z + b A x - T - b < z F A x T F A b < w v B x v < z φ
46 simp1rl φ x B w + z + b A x - T - b < z F A x T F A b < w x B
47 46 adantr φ x B w + z + b A x - T - b < z F A x T F A b < w v B x B
48 47 adantr φ x B w + z + b A x - T - b < z F A x T F A b < w v B x v < z x B
49 simplr φ x B w + z + b A x - T - b < z F A x T F A b < w v B x v < z v B
50 fvres x B F B x = F x
51 50 adantl φ x B F B x = F x
52 3 ssrab3 B
53 52 sseli x B x
54 53 adantl φ x B x
55 29 adantr φ x B T
56 54 55 npcand φ x B x - T + T = x
57 56 eqcomd φ x B x = x - T + T
58 57 fveq2d φ x B F x = F x - T + T
59 simpl φ x B φ
60 59 38 jca φ x B φ x T A
61 eleq1 y = x T y A x T A
62 61 anbi2d y = x T φ y A φ x T A
63 fvoveq1 y = x T F y + T = F x - T + T
64 fveq2 y = x T F y = F x T
65 63 64 eqeq12d y = x T F y + T = F y F x - T + T = F x T
66 62 65 imbi12d y = x T φ y A F y + T = F y φ x T A F x - T + T = F x T
67 eleq1 x = y x A y A
68 67 anbi2d x = y φ x A φ y A
69 fvoveq1 x = y F x + T = F y + T
70 fveq2 x = y F x = F y
71 69 70 eqeq12d x = y F x + T = F x F y + T = F y
72 68 71 imbi12d x = y φ x A F x + T = F x φ y A F y + T = F y
73 72 6 chvarvv φ y A F y + T = F y
74 66 73 vtoclg x T A φ x T A F x - T + T = F x T
75 38 60 74 sylc φ x B F x - T + T = F x T
76 38 fvresd φ x B F A x T = F x T
77 75 76 eqtr4d φ x B F x - T + T = F A x T
78 51 58 77 3eqtrd φ x B F B x = F A x T
79 78 3adant3 φ x B v B F B x = F A x T
80 eleq1 x = v x B v B
81 80 anbi2d x = v φ x B φ v B
82 fveq2 x = v F B x = F B v
83 fvoveq1 x = v F A x T = F A v T
84 82 83 eqeq12d x = v F B x = F A x T F B v = F A v T
85 81 84 imbi12d x = v φ x B F B x = F A x T φ v B F B v = F A v T
86 85 78 chvarvv φ v B F B v = F A v T
87 86 3adant2 φ x B v B F B v = F A v T
88 79 87 oveq12d φ x B v B F B x F B v = F A x T F A v T
89 88 fveq2d φ x B v B F B x F B v = F A x T F A v T
90 45 48 49 89 syl3anc φ x B w + z + b A x - T - b < z F A x T F A b < w v B x v < z F B x F B v = F A x T F A v T
91 simpr φ x B w + z + b A x - T - b < z F A x T F A b < w v B x v < z x v < z
92 24 simpld φ x B x
93 92 adantr φ x B v B x
94 52 sseli v B v
95 94 adantl φ x B v B v
96 55 adantr φ x B v B T
97 93 95 96 nnncan2d φ x B v B x - T - v T = x v
98 97 fveq2d φ x B v B x - T - v T = x v
99 98 adantr φ x B v B x v < z x - T - v T = x v
100 simpr φ x B v B x v < z x v < z
101 99 100 eqbrtrd φ x B v B x v < z x - T - v T < z
102 45 48 49 91 101 syl1111anc φ x B w + z + b A x - T - b < z F A x T F A b < w v B x v < z x - T - v T < z
103 oveq2 b = v T x - T - b = x - T - v T
104 103 fveq2d b = v T x - T - b = x - T - v T
105 104 breq1d b = v T x - T - b < z x - T - v T < z
106 fveq2 b = v T F A b = F A v T
107 106 oveq2d b = v T F A x T F A b = F A x T F A v T
108 107 fveq2d b = v T F A x T F A b = F A x T F A v T
109 108 breq1d b = v T F A x T F A b < w F A x T F A v T < w
110 105 109 imbi12d b = v T x - T - b < z F A x T F A b < w x - T - v T < z F A x T F A v T < w
111 simpll3 φ x B w + z + b A x - T - b < z F A x T F A b < w v B x v < z b A x - T - b < z F A x T F A b < w
112 oveq1 x = v x T = v T
113 112 eleq1d x = v x T A v T A
114 81 113 imbi12d x = v φ x B x T A φ v B v T A
115 114 38 chvarvv φ v B v T A
116 45 49 115 syl2anc φ x B w + z + b A x - T - b < z F A x T F A b < w v B x v < z v T A
117 110 111 116 rspcdva φ x B w + z + b A x - T - b < z F A x T F A b < w v B x v < z x - T - v T < z F A x T F A v T < w
118 102 117 mpd φ x B w + z + b A x - T - b < z F A x T F A b < w v B x v < z F A x T F A v T < w
119 90 118 eqbrtrd φ x B w + z + b A x - T - b < z F A x T F A b < w v B x v < z F B x F B v < w
120 119 ex φ x B w + z + b A x - T - b < z F A x T F A b < w v B x v < z F B x F B v < w
121 120 ralrimiva φ x B w + z + b A x - T - b < z F A x T F A b < w v B x v < z F B x F B v < w
122 121 3exp φ x B w + z + b A x - T - b < z F A x T F A b < w v B x v < z F B x F B v < w
123 122 reximdvai φ x B w + z + b A x - T - b < z F A x T F A b < w z + v B x v < z F B x F B v < w
124 43 123 mpd φ x B w + z + v B x v < z F B x F B v < w
125 124 ralrimivva φ x B w + z + v B x v < z F B x F B v < w
126 52 a1i φ B
127 ssidd φ
128 elcncf B F B : B cn F B : B x B w + z + v B x v < z F B x F B v < w
129 126 127 128 syl2anc φ F B : B cn F B : B x B w + z + v B x v < z F B x F B v < w
130 8 125 129 mpbir2and φ F B : B cn