Step |
Hyp |
Ref |
Expression |
1 |
|
cncfperiod.a |
|
2 |
|
cncfperiod.t |
|
3 |
|
cncfperiod.b |
|
4 |
|
cncfperiod.f |
|
5 |
|
cncfperiod.cssdmf |
|
6 |
|
cncfperiod.fper |
|
7 |
|
cncfperiod.fcn |
|
8 |
4 5
|
fssresd |
|
9 |
|
fvoveq1 |
|
10 |
9
|
breq1d |
|
11 |
10
|
imbrov2fvoveq |
|
12 |
11
|
rexralbidv |
|
13 |
12
|
ralbidv |
|
14 |
7
|
adantr |
|
15 |
1
|
adantr |
|
16 |
|
ssidd |
|
17 |
|
elcncf |
|
18 |
15 16 17
|
syl2anc |
|
19 |
14 18
|
mpbid |
|
20 |
19
|
simprd |
|
21 |
|
simpr |
|
22 |
21 3
|
eleqtrdi |
|
23 |
|
rabid |
|
24 |
22 23
|
sylib |
|
25 |
24
|
simprd |
|
26 |
|
oveq1 |
|
27 |
26
|
3ad2ant3 |
|
28 |
1
|
sselda |
|
29 |
2
|
recnd |
|
30 |
29
|
adantr |
|
31 |
28 30
|
pncand |
|
32 |
31
|
adantlr |
|
33 |
32
|
3adant3 |
|
34 |
27 33
|
eqtrd |
|
35 |
|
simp2 |
|
36 |
34 35
|
eqeltrd |
|
37 |
36
|
rexlimdv3a |
|
38 |
25 37
|
mpd |
|
39 |
13 20 38
|
rspcdva |
|
40 |
39
|
adantrr |
|
41 |
|
simprr |
|
42 |
|
rspa |
|
43 |
40 41 42
|
syl2anc |
|
44 |
|
simpl1l |
|
45 |
44
|
adantr |
|
46 |
|
simp1rl |
|
47 |
46
|
adantr |
|
48 |
47
|
adantr |
|
49 |
|
simplr |
|
50 |
|
fvres |
|
51 |
50
|
adantl |
|
52 |
3
|
ssrab3 |
|
53 |
52
|
sseli |
|
54 |
53
|
adantl |
|
55 |
29
|
adantr |
|
56 |
54 55
|
npcand |
|
57 |
56
|
eqcomd |
|
58 |
57
|
fveq2d |
|
59 |
|
simpl |
|
60 |
59 38
|
jca |
|
61 |
|
eleq1 |
|
62 |
61
|
anbi2d |
|
63 |
|
fvoveq1 |
|
64 |
|
fveq2 |
|
65 |
63 64
|
eqeq12d |
|
66 |
62 65
|
imbi12d |
|
67 |
|
eleq1 |
|
68 |
67
|
anbi2d |
|
69 |
|
fvoveq1 |
|
70 |
|
fveq2 |
|
71 |
69 70
|
eqeq12d |
|
72 |
68 71
|
imbi12d |
|
73 |
72 6
|
chvarvv |
|
74 |
66 73
|
vtoclg |
|
75 |
38 60 74
|
sylc |
|
76 |
38
|
fvresd |
|
77 |
75 76
|
eqtr4d |
|
78 |
51 58 77
|
3eqtrd |
|
79 |
78
|
3adant3 |
|
80 |
|
eleq1 |
|
81 |
80
|
anbi2d |
|
82 |
|
fveq2 |
|
83 |
|
fvoveq1 |
|
84 |
82 83
|
eqeq12d |
|
85 |
81 84
|
imbi12d |
|
86 |
85 78
|
chvarvv |
|
87 |
86
|
3adant2 |
|
88 |
79 87
|
oveq12d |
|
89 |
88
|
fveq2d |
|
90 |
45 48 49 89
|
syl3anc |
|
91 |
|
simpr |
|
92 |
24
|
simpld |
|
93 |
92
|
adantr |
|
94 |
52
|
sseli |
|
95 |
94
|
adantl |
|
96 |
55
|
adantr |
|
97 |
93 95 96
|
nnncan2d |
|
98 |
97
|
fveq2d |
|
99 |
98
|
adantr |
|
100 |
|
simpr |
|
101 |
99 100
|
eqbrtrd |
|
102 |
45 48 49 91 101
|
syl1111anc |
|
103 |
|
oveq2 |
|
104 |
103
|
fveq2d |
|
105 |
104
|
breq1d |
|
106 |
|
fveq2 |
|
107 |
106
|
oveq2d |
|
108 |
107
|
fveq2d |
|
109 |
108
|
breq1d |
|
110 |
105 109
|
imbi12d |
|
111 |
|
simpll3 |
|
112 |
|
oveq1 |
|
113 |
112
|
eleq1d |
|
114 |
81 113
|
imbi12d |
|
115 |
114 38
|
chvarvv |
|
116 |
45 49 115
|
syl2anc |
|
117 |
110 111 116
|
rspcdva |
|
118 |
102 117
|
mpd |
|
119 |
90 118
|
eqbrtrd |
|
120 |
119
|
ex |
|
121 |
120
|
ralrimiva |
|
122 |
121
|
3exp |
|
123 |
122
|
reximdvai |
|
124 |
43 123
|
mpd |
|
125 |
124
|
ralrimivva |
|
126 |
52
|
a1i |
|
127 |
|
ssidd |
|
128 |
|
elcncf |
|
129 |
126 127 128
|
syl2anc |
|
130 |
8 125 129
|
mpbir2and |
|