Metamath Proof Explorer


Theorem cncfss

Description: The set of continuous functions is expanded when the range is expanded. (Contributed by Mario Carneiro, 30-Aug-2014)

Ref Expression
Assertion cncfss B C C A cn B A cn C

Proof

Step Hyp Ref Expression
1 cncff f : A cn B f : A B
2 1 adantl B C C f : A cn B f : A B
3 simpll B C C f : A cn B B C
4 2 3 fssd B C C f : A cn B f : A C
5 cncffvrn C f : A cn B f : A cn C f : A C
6 5 adantll B C C f : A cn B f : A cn C f : A C
7 4 6 mpbird B C C f : A cn B f : A cn C
8 7 ex B C C f : A cn B f : A cn C
9 8 ssrdv B C C A cn B A cn C