Metamath Proof Explorer


Theorem cncfval

Description: The value of the continuous complex function operation is the set of continuous functions from A to B . (Contributed by Paul Chapman, 11-Oct-2007) (Revised by Mario Carneiro, 9-Nov-2013)

Ref Expression
Assertion cncfval A B A cn B = f B A | x A y + z + w A x w < z f x f w < y

Proof

Step Hyp Ref Expression
1 cnex V
2 1 elpw2 A 𝒫 A
3 1 elpw2 B 𝒫 B
4 oveq2 a = A b a = b A
5 raleq a = A w a x w < z f x f w < y w A x w < z f x f w < y
6 5 rexbidv a = A z + w a x w < z f x f w < y z + w A x w < z f x f w < y
7 6 ralbidv a = A y + z + w a x w < z f x f w < y y + z + w A x w < z f x f w < y
8 7 raleqbi1dv a = A x a y + z + w a x w < z f x f w < y x A y + z + w A x w < z f x f w < y
9 4 8 rabeqbidv a = A f b a | x a y + z + w a x w < z f x f w < y = f b A | x A y + z + w A x w < z f x f w < y
10 oveq1 b = B b A = B A
11 10 rabeqdv b = B f b A | x A y + z + w A x w < z f x f w < y = f B A | x A y + z + w A x w < z f x f w < y
12 df-cncf cn = a 𝒫 , b 𝒫 f b a | x a y + z + w a x w < z f x f w < y
13 ovex B A V
14 13 rabex f B A | x A y + z + w A x w < z f x f w < y V
15 9 11 12 14 ovmpo A 𝒫 B 𝒫 A cn B = f B A | x A y + z + w A x w < z f x f w < y
16 2 3 15 syl2anbr A B A cn B = f B A | x A y + z + w A x w < z f x f w < y