Metamath Proof Explorer


Theorem cnclima

Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnclima F J Cn K A Clsd K F -1 A Clsd J

Proof

Step Hyp Ref Expression
1 eqid J = J
2 eqid K = K
3 1 2 cnf F J Cn K F : J K
4 3 adantr F J Cn K A Clsd K F : J K
5 ffun F : J K Fun F
6 funcnvcnv Fun F Fun F -1 -1
7 imadif Fun F -1 -1 F -1 K A = F -1 K F -1 A
8 5 6 7 3syl F : J K F -1 K A = F -1 K F -1 A
9 fimacnv F : J K F -1 K = J
10 9 difeq1d F : J K F -1 K F -1 A = J F -1 A
11 8 10 eqtr2d F : J K J F -1 A = F -1 K A
12 4 11 syl F J Cn K A Clsd K J F -1 A = F -1 K A
13 2 cldopn A Clsd K K A K
14 cnima F J Cn K K A K F -1 K A J
15 13 14 sylan2 F J Cn K A Clsd K F -1 K A J
16 12 15 eqeltrd F J Cn K A Clsd K J F -1 A J
17 cntop1 F J Cn K J Top
18 cnvimass F -1 A dom F
19 18 4 fssdm F J Cn K A Clsd K F -1 A J
20 1 iscld2 J Top F -1 A J F -1 A Clsd J J F -1 A J
21 17 19 20 syl2an2r F J Cn K A Clsd K F -1 A Clsd J J F -1 A J
22 16 21 mpbird F J Cn K A Clsd K F -1 A Clsd J