Metamath Proof Explorer


Theorem cncls2

Description: Continuity in terms of closure. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion cncls2 JTopOnXKTopOnYFJCnKF:XYx𝒫YclsJF-1xF-1clsKx

Proof

Step Hyp Ref Expression
1 cnf2 JTopOnXKTopOnYFJCnKF:XY
2 1 3expia JTopOnXKTopOnYFJCnKF:XY
3 elpwi x𝒫YxY
4 3 adantl JTopOnXKTopOnYx𝒫YxY
5 toponuni KTopOnYY=K
6 5 ad2antlr JTopOnXKTopOnYx𝒫YY=K
7 4 6 sseqtrd JTopOnXKTopOnYx𝒫YxK
8 eqid K=K
9 8 cncls2i FJCnKxKclsJF-1xF-1clsKx
10 9 expcom xKFJCnKclsJF-1xF-1clsKx
11 7 10 syl JTopOnXKTopOnYx𝒫YFJCnKclsJF-1xF-1clsKx
12 11 ralrimdva JTopOnXKTopOnYFJCnKx𝒫YclsJF-1xF-1clsKx
13 2 12 jcad JTopOnXKTopOnYFJCnKF:XYx𝒫YclsJF-1xF-1clsKx
14 8 cldss2 ClsdK𝒫K
15 5 ad2antlr JTopOnXKTopOnYF:XYY=K
16 15 pweqd JTopOnXKTopOnYF:XY𝒫Y=𝒫K
17 14 16 sseqtrrid JTopOnXKTopOnYF:XYClsdK𝒫Y
18 17 sseld JTopOnXKTopOnYF:XYxClsdKx𝒫Y
19 18 imim1d JTopOnXKTopOnYF:XYx𝒫YclsJF-1xF-1clsKxxClsdKclsJF-1xF-1clsKx
20 cldcls xClsdKclsKx=x
21 20 ad2antll JTopOnXKTopOnYF:XYxClsdKclsKx=x
22 21 imaeq2d JTopOnXKTopOnYF:XYxClsdKF-1clsKx=F-1x
23 22 sseq2d JTopOnXKTopOnYF:XYxClsdKclsJF-1xF-1clsKxclsJF-1xF-1x
24 topontop JTopOnXJTop
25 24 ad2antrr JTopOnXKTopOnYF:XYxClsdKJTop
26 cnvimass F-1xdomF
27 fdm F:XYdomF=X
28 27 ad2antrl JTopOnXKTopOnYF:XYxClsdKdomF=X
29 toponuni JTopOnXX=J
30 29 ad2antrr JTopOnXKTopOnYF:XYxClsdKX=J
31 28 30 eqtrd JTopOnXKTopOnYF:XYxClsdKdomF=J
32 26 31 sseqtrid JTopOnXKTopOnYF:XYxClsdKF-1xJ
33 eqid J=J
34 33 iscld4 JTopF-1xJF-1xClsdJclsJF-1xF-1x
35 25 32 34 syl2anc JTopOnXKTopOnYF:XYxClsdKF-1xClsdJclsJF-1xF-1x
36 23 35 bitr4d JTopOnXKTopOnYF:XYxClsdKclsJF-1xF-1clsKxF-1xClsdJ
37 36 expr JTopOnXKTopOnYF:XYxClsdKclsJF-1xF-1clsKxF-1xClsdJ
38 37 pm5.74d JTopOnXKTopOnYF:XYxClsdKclsJF-1xF-1clsKxxClsdKF-1xClsdJ
39 19 38 sylibd JTopOnXKTopOnYF:XYx𝒫YclsJF-1xF-1clsKxxClsdKF-1xClsdJ
40 39 ralimdv2 JTopOnXKTopOnYF:XYx𝒫YclsJF-1xF-1clsKxxClsdKF-1xClsdJ
41 40 imdistanda JTopOnXKTopOnYF:XYx𝒫YclsJF-1xF-1clsKxF:XYxClsdKF-1xClsdJ
42 iscncl JTopOnXKTopOnYFJCnKF:XYxClsdKF-1xClsdJ
43 41 42 sylibrd JTopOnXKTopOnYF:XYx𝒫YclsJF-1xF-1clsKxFJCnK
44 13 43 impbid JTopOnXKTopOnYFJCnKF:XYx𝒫YclsJF-1xF-1clsKx