Step |
Hyp |
Ref |
Expression |
1 |
|
cnf2 |
|
2 |
1
|
3expia |
|
3 |
|
elpwi |
|
4 |
3
|
adantl |
|
5 |
|
toponuni |
|
6 |
5
|
ad2antlr |
|
7 |
4 6
|
sseqtrd |
|
8 |
|
eqid |
|
9 |
8
|
cncls2i |
|
10 |
9
|
expcom |
|
11 |
7 10
|
syl |
|
12 |
11
|
ralrimdva |
|
13 |
2 12
|
jcad |
|
14 |
8
|
cldss2 |
|
15 |
5
|
ad2antlr |
|
16 |
15
|
pweqd |
|
17 |
14 16
|
sseqtrrid |
|
18 |
17
|
sseld |
|
19 |
18
|
imim1d |
|
20 |
|
cldcls |
|
21 |
20
|
ad2antll |
|
22 |
21
|
imaeq2d |
|
23 |
22
|
sseq2d |
|
24 |
|
topontop |
|
25 |
24
|
ad2antrr |
|
26 |
|
cnvimass |
|
27 |
|
fdm |
|
28 |
27
|
ad2antrl |
|
29 |
|
toponuni |
|
30 |
29
|
ad2antrr |
|
31 |
28 30
|
eqtrd |
|
32 |
26 31
|
sseqtrid |
|
33 |
|
eqid |
|
34 |
33
|
iscld4 |
|
35 |
25 32 34
|
syl2anc |
|
36 |
23 35
|
bitr4d |
|
37 |
36
|
expr |
|
38 |
37
|
pm5.74d |
|
39 |
19 38
|
sylibd |
|
40 |
39
|
ralimdv2 |
|
41 |
40
|
imdistanda |
|
42 |
|
iscncl |
|
43 |
41 42
|
sylibrd |
|
44 |
13 43
|
impbid |
|