Metamath Proof Explorer


Theorem cncls2i

Description: Property of the preimage of a closure. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis cncls2i.1 Y = K
Assertion cncls2i F J Cn K S Y cls J F -1 S F -1 cls K S

Proof

Step Hyp Ref Expression
1 cncls2i.1 Y = K
2 cntop2 F J Cn K K Top
3 1 clscld K Top S Y cls K S Clsd K
4 2 3 sylan F J Cn K S Y cls K S Clsd K
5 cnclima F J Cn K cls K S Clsd K F -1 cls K S Clsd J
6 4 5 syldan F J Cn K S Y F -1 cls K S Clsd J
7 1 sscls K Top S Y S cls K S
8 2 7 sylan F J Cn K S Y S cls K S
9 imass2 S cls K S F -1 S F -1 cls K S
10 8 9 syl F J Cn K S Y F -1 S F -1 cls K S
11 eqid J = J
12 11 clsss2 F -1 cls K S Clsd J F -1 S F -1 cls K S cls J F -1 S F -1 cls K S
13 6 10 12 syl2anc F J Cn K S Y cls J F -1 S F -1 cls K S