Step |
Hyp |
Ref |
Expression |
1 |
|
cncmet.1 |
|
2 |
|
eqid |
|
3 |
2
|
cnfldtopn |
|
4 |
1
|
fveq2i |
|
5 |
3 4
|
eqtr4i |
|
6 |
|
cnmet |
|
7 |
1 6
|
eqeltri |
|
8 |
7
|
a1i |
|
9 |
|
1rp |
|
10 |
9
|
a1i |
|
11 |
2
|
cnfldtop |
|
12 |
|
metxmet |
|
13 |
7 12
|
ax-mp |
|
14 |
|
1xr |
|
15 |
|
blssm |
|
16 |
13 14 15
|
mp3an13 |
|
17 |
|
unicntop |
|
18 |
17
|
clscld |
|
19 |
11 16 18
|
sylancr |
|
20 |
|
abscl |
|
21 |
|
peano2re |
|
22 |
20 21
|
syl |
|
23 |
|
df-rab |
|
24 |
23
|
eqcomi |
|
25 |
5 24
|
blcls |
|
26 |
13 14 25
|
mp3an13 |
|
27 |
|
abscl |
|
28 |
27
|
ad2antrl |
|
29 |
20
|
adantr |
|
30 |
28 29
|
resubcld |
|
31 |
|
simpl |
|
32 |
|
id |
|
33 |
|
subcl |
|
34 |
31 32 33
|
syl2anr |
|
35 |
34
|
abscld |
|
36 |
|
1red |
|
37 |
|
simprl |
|
38 |
|
simpl |
|
39 |
37 38
|
abs2difd |
|
40 |
1
|
cnmetdval |
|
41 |
|
abssub |
|
42 |
40 41
|
eqtrd |
|
43 |
42
|
adantrr |
|
44 |
|
simprr |
|
45 |
43 44
|
eqbrtrrd |
|
46 |
30 35 36 39 45
|
letrd |
|
47 |
28 29 36
|
lesubadd2d |
|
48 |
46 47
|
mpbid |
|
49 |
48
|
ex |
|
50 |
49
|
ss2abdv |
|
51 |
26 50
|
sstrd |
|
52 |
|
ssabral |
|
53 |
51 52
|
sylib |
|
54 |
|
brralrspcev |
|
55 |
22 53 54
|
syl2anc |
|
56 |
17
|
clsss3 |
|
57 |
11 16 56
|
sylancr |
|
58 |
|
eqid |
|
59 |
2 58
|
cnheibor |
|
60 |
57 59
|
syl |
|
61 |
19 55 60
|
mpbir2and |
|
62 |
61
|
adantl |
|
63 |
5 8 10 62
|
relcmpcmet |
|
64 |
63
|
mptru |
|