Metamath Proof Explorer


Theorem cncmpmax

Description: When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses cncmpmax.1 T = J
cncmpmax.2 K = topGen ran .
cncmpmax.3 φ J Comp
cncmpmax.4 φ F J Cn K
cncmpmax.5 φ T
Assertion cncmpmax φ sup ran F < ran F sup ran F < t T F t sup ran F <

Proof

Step Hyp Ref Expression
1 cncmpmax.1 T = J
2 cncmpmax.2 K = topGen ran .
3 cncmpmax.3 φ J Comp
4 cncmpmax.4 φ F J Cn K
5 cncmpmax.5 φ T
6 1 2 3 4 5 evth φ x T t T F t F x
7 eqid J Cn K = J Cn K
8 2 1 7 4 fcnre φ F : T
9 8 frnd φ ran F
10 9 adantr φ x T t T F t F x ran F
11 8 ffund φ Fun F
12 11 adantr φ x T Fun F
13 simpr φ x T x T
14 8 adantr φ x T F : T
15 14 fdmd φ x T dom F = T
16 13 15 eleqtrrd φ x T x dom F
17 fvelrn Fun F x dom F F x ran F
18 12 16 17 syl2anc φ x T F x ran F
19 18 adantrr φ x T t T F t F x F x ran F
20 ffn F : T F Fn T
21 fvelrnb F Fn T y ran F s T F s = y
22 8 20 21 3syl φ y ran F s T F s = y
23 22 biimpa φ y ran F s T F s = y
24 df-rex s T F s = y s s T F s = y
25 23 24 sylib φ y ran F s s T F s = y
26 25 adantlr φ t T F t F x y ran F s s T F s = y
27 simprr φ t T F t F x y ran F s T F s = y F s = y
28 simpllr φ t T F t F x y ran F s T F s = y t T F t F x
29 simprl φ t T F t F x y ran F s T F s = y s T
30 fveq2 t = s F t = F s
31 30 breq1d t = s F t F x F s F x
32 31 rspccva t T F t F x s T F s F x
33 28 29 32 syl2anc φ t T F t F x y ran F s T F s = y F s F x
34 27 33 eqbrtrrd φ t T F t F x y ran F s T F s = y y F x
35 26 34 exlimddv φ t T F t F x y ran F y F x
36 35 ralrimiva φ t T F t F x y ran F y F x
37 36 adantrl φ x T t T F t F x y ran F y F x
38 ubelsupr ran F F x ran F y ran F y F x F x = sup ran F <
39 10 19 37 38 syl3anc φ x T t T F t F x F x = sup ran F <
40 39 eqcomd φ x T t T F t F x sup ran F < = F x
41 40 19 eqeltrd φ x T t T F t F x sup ran F < ran F
42 10 41 sseldd φ x T t T F t F x sup ran F <
43 simplrr φ x T t T F t F x s T t T F t F x
44 43 32 sylancom φ x T t T F t F x s T F s F x
45 40 adantr φ x T t T F t F x s T sup ran F < = F x
46 44 45 breqtrrd φ x T t T F t F x s T F s sup ran F <
47 46 ralrimiva φ x T t T F t F x s T F s sup ran F <
48 30 breq1d t = s F t sup ran F < F s sup ran F <
49 48 cbvralvw t T F t sup ran F < s T F s sup ran F <
50 47 49 sylibr φ x T t T F t F x t T F t sup ran F <
51 41 42 50 3jca φ x T t T F t F x sup ran F < ran F sup ran F < t T F t sup ran F <
52 6 51 rexlimddv φ sup ran F < ran F sup ran F < t T F t sup ran F <