Metamath Proof Explorer


Theorem cncms

Description: The field of complex numbers is a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion cncms fld CMetSp

Proof

Step Hyp Ref Expression
1 cnfldms fld MetSp
2 eqid abs = abs
3 2 cncmet abs CMet
4 cnfldbas = Base fld
5 cnmet abs Met
6 metf abs Met abs : ×
7 5 6 ax-mp abs : ×
8 ffn abs : × abs Fn ×
9 fnresdm abs Fn × abs × = abs
10 7 8 9 mp2b abs × = abs
11 cnfldds abs = dist fld
12 11 reseq1i abs × = dist fld ×
13 10 12 eqtr3i abs = dist fld ×
14 4 13 iscms fld CMetSp fld MetSp abs CMet
15 1 3 14 mpbir2an fld CMetSp