Metamath Proof Explorer


Theorem cnco

Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnco F J Cn K G K Cn L G F J Cn L

Proof

Step Hyp Ref Expression
1 cntop1 F J Cn K J Top
2 cntop2 G K Cn L L Top
3 1 2 anim12i F J Cn K G K Cn L J Top L Top
4 eqid K = K
5 eqid L = L
6 4 5 cnf G K Cn L G : K L
7 eqid J = J
8 7 4 cnf F J Cn K F : J K
9 fco G : K L F : J K G F : J L
10 6 8 9 syl2anr F J Cn K G K Cn L G F : J L
11 cnvco G F -1 = F -1 G -1
12 11 imaeq1i G F -1 x = F -1 G -1 x
13 imaco F -1 G -1 x = F -1 G -1 x
14 12 13 eqtri G F -1 x = F -1 G -1 x
15 simpll F J Cn K G K Cn L x L F J Cn K
16 cnima G K Cn L x L G -1 x K
17 16 adantll F J Cn K G K Cn L x L G -1 x K
18 cnima F J Cn K G -1 x K F -1 G -1 x J
19 15 17 18 syl2anc F J Cn K G K Cn L x L F -1 G -1 x J
20 14 19 eqeltrid F J Cn K G K Cn L x L G F -1 x J
21 20 ralrimiva F J Cn K G K Cn L x L G F -1 x J
22 10 21 jca F J Cn K G K Cn L G F : J L x L G F -1 x J
23 7 5 iscn2 G F J Cn L J Top L Top G F : J L x L G F -1 x J
24 3 22 23 sylanbrc F J Cn K G K Cn L G F J Cn L