Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|
2 |
|
cncff |
|
3 |
1 2
|
syl |
|
4 |
|
simp2 |
|
5 |
|
fco |
|
6 |
3 4 5
|
syl2anc |
|
7 |
4
|
fdmd |
|
8 |
|
mbfdm |
|
9 |
8
|
3ad2ant1 |
|
10 |
7 9
|
eqeltrrd |
|
11 |
|
mblss |
|
12 |
10 11
|
syl |
|
13 |
|
cnex |
|
14 |
|
reex |
|
15 |
|
elpm2r |
|
16 |
13 14 15
|
mpanl12 |
|
17 |
6 12 16
|
syl2anc |
|
18 |
|
coeq1 |
|
19 |
|
coass |
|
20 |
18 19
|
eqtrdi |
|
21 |
20
|
cnveqd |
|
22 |
21
|
imaeq1d |
|
23 |
22
|
eleq1d |
|
24 |
|
cnvco |
|
25 |
24
|
imaeq1i |
|
26 |
|
imaco |
|
27 |
25 26
|
eqtri |
|
28 |
|
simplll |
|
29 |
|
simpllr |
|
30 |
|
cncfrss |
|
31 |
30
|
adantl |
|
32 |
|
simpr |
|
33 |
|
ax-resscn |
|
34 |
|
eqid |
|
35 |
|
eqid |
|
36 |
34
|
tgioo2 |
|
37 |
34 35 36
|
cncfcn |
|
38 |
31 33 37
|
sylancl |
|
39 |
32 38
|
eleqtrd |
|
40 |
|
retopbas |
|
41 |
|
bastg |
|
42 |
40 41
|
ax-mp |
|
43 |
|
simplr |
|
44 |
42 43
|
sselid |
|
45 |
|
cnima |
|
46 |
39 44 45
|
syl2anc |
|
47 |
34 35
|
mbfimaopn2 |
|
48 |
28 29 31 46 47
|
syl31anc |
|
49 |
27 48
|
eqeltrid |
|
50 |
49
|
ralrimiva |
|
51 |
50
|
3adantl3 |
|
52 |
|
recncf |
|
53 |
52
|
a1i |
|
54 |
1 53
|
cncfco |
|
55 |
54
|
adantr |
|
56 |
23 51 55
|
rspcdva |
|
57 |
|
coeq1 |
|
58 |
|
coass |
|
59 |
57 58
|
eqtrdi |
|
60 |
59
|
cnveqd |
|
61 |
60
|
imaeq1d |
|
62 |
61
|
eleq1d |
|
63 |
|
imcncf |
|
64 |
63
|
a1i |
|
65 |
1 64
|
cncfco |
|
66 |
65
|
adantr |
|
67 |
62 51 66
|
rspcdva |
|
68 |
56 67
|
jca |
|
69 |
68
|
ralrimiva |
|
70 |
|
ismbf1 |
|
71 |
17 69 70
|
sylanbrc |
|