Metamath Proof Explorer


Theorem cncombf

Description: The composition of a continuous function with a measurable function is measurable. (More generally, G can be a Borel-measurable function, but notably the condition that G be only measurable is too weak, the usual counterexample taking G to be the Cantor function and F the indicator function of the G -image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Assertion cncombf F MblFn F : A B G : B cn G F MblFn

Proof

Step Hyp Ref Expression
1 simp3 F MblFn F : A B G : B cn G : B cn
2 cncff G : B cn G : B
3 1 2 syl F MblFn F : A B G : B cn G : B
4 simp2 F MblFn F : A B G : B cn F : A B
5 fco G : B F : A B G F : A
6 3 4 5 syl2anc F MblFn F : A B G : B cn G F : A
7 4 fdmd F MblFn F : A B G : B cn dom F = A
8 mbfdm F MblFn dom F dom vol
9 8 3ad2ant1 F MblFn F : A B G : B cn dom F dom vol
10 7 9 eqeltrrd F MblFn F : A B G : B cn A dom vol
11 mblss A dom vol A
12 10 11 syl F MblFn F : A B G : B cn A
13 cnex V
14 reex V
15 elpm2r V V G F : A A G F 𝑝𝑚
16 13 14 15 mpanl12 G F : A A G F 𝑝𝑚
17 6 12 16 syl2anc F MblFn F : A B G : B cn G F 𝑝𝑚
18 coeq1 g = G g F = G F
19 coass G F = G F
20 18 19 eqtrdi g = G g F = G F
21 20 cnveqd g = G g F -1 = G F -1
22 21 imaeq1d g = G g F -1 x = G F -1 x
23 22 eleq1d g = G g F -1 x dom vol G F -1 x dom vol
24 cnvco g F -1 = F -1 g -1
25 24 imaeq1i g F -1 x = F -1 g -1 x
26 imaco F -1 g -1 x = F -1 g -1 x
27 25 26 eqtri g F -1 x = F -1 g -1 x
28 simplll F MblFn F : A B x ran . g : B cn F MblFn
29 simpllr F MblFn F : A B x ran . g : B cn F : A B
30 cncfrss g : B cn B
31 30 adantl F MblFn F : A B x ran . g : B cn B
32 simpr F MblFn F : A B x ran . g : B cn g : B cn
33 ax-resscn
34 eqid TopOpen fld = TopOpen fld
35 eqid TopOpen fld 𝑡 B = TopOpen fld 𝑡 B
36 34 tgioo2 topGen ran . = TopOpen fld 𝑡
37 34 35 36 cncfcn B B cn = TopOpen fld 𝑡 B Cn topGen ran .
38 31 33 37 sylancl F MblFn F : A B x ran . g : B cn B cn = TopOpen fld 𝑡 B Cn topGen ran .
39 32 38 eleqtrd F MblFn F : A B x ran . g : B cn g TopOpen fld 𝑡 B Cn topGen ran .
40 retopbas ran . TopBases
41 bastg ran . TopBases ran . topGen ran .
42 40 41 ax-mp ran . topGen ran .
43 simplr F MblFn F : A B x ran . g : B cn x ran .
44 42 43 sselid F MblFn F : A B x ran . g : B cn x topGen ran .
45 cnima g TopOpen fld 𝑡 B Cn topGen ran . x topGen ran . g -1 x TopOpen fld 𝑡 B
46 39 44 45 syl2anc F MblFn F : A B x ran . g : B cn g -1 x TopOpen fld 𝑡 B
47 34 35 mbfimaopn2 F MblFn F : A B B g -1 x TopOpen fld 𝑡 B F -1 g -1 x dom vol
48 28 29 31 46 47 syl31anc F MblFn F : A B x ran . g : B cn F -1 g -1 x dom vol
49 27 48 eqeltrid F MblFn F : A B x ran . g : B cn g F -1 x dom vol
50 49 ralrimiva F MblFn F : A B x ran . g B cn g F -1 x dom vol
51 50 3adantl3 F MblFn F : A B G : B cn x ran . g B cn g F -1 x dom vol
52 recncf : cn
53 52 a1i F MblFn F : A B G : B cn : cn
54 1 53 cncfco F MblFn F : A B G : B cn G : B cn
55 54 adantr F MblFn F : A B G : B cn x ran . G : B cn
56 23 51 55 rspcdva F MblFn F : A B G : B cn x ran . G F -1 x dom vol
57 coeq1 g = G g F = G F
58 coass G F = G F
59 57 58 eqtrdi g = G g F = G F
60 59 cnveqd g = G g F -1 = G F -1
61 60 imaeq1d g = G g F -1 x = G F -1 x
62 61 eleq1d g = G g F -1 x dom vol G F -1 x dom vol
63 imcncf : cn
64 63 a1i F MblFn F : A B G : B cn : cn
65 1 64 cncfco F MblFn F : A B G : B cn G : B cn
66 65 adantr F MblFn F : A B G : B cn x ran . G : B cn
67 62 51 66 rspcdva F MblFn F : A B G : B cn x ran . G F -1 x dom vol
68 56 67 jca F MblFn F : A B G : B cn x ran . G F -1 x dom vol G F -1 x dom vol
69 68 ralrimiva F MblFn F : A B G : B cn x ran . G F -1 x dom vol G F -1 x dom vol
70 ismbf1 G F MblFn G F 𝑝𝑚 x ran . G F -1 x dom vol G F -1 x dom vol
71 17 69 70 sylanbrc F MblFn F : A B G : B cn G F MblFn