Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|
2 |
1
|
mul01d |
|
3 |
2
|
3ad2ant1 |
|
4 |
|
zcn |
|
5 |
4
|
mul01d |
|
6 |
5
|
3ad2ant2 |
|
7 |
3 6
|
eqtr4d |
|
8 |
7
|
adantr |
|
9 |
8
|
oveq1d |
|
10 |
9
|
adantr |
|
11 |
|
oveq2 |
|
12 |
11
|
oveq1d |
|
13 |
|
oveq2 |
|
14 |
13
|
oveq1d |
|
15 |
12 14
|
eqeq12d |
|
16 |
10 15
|
syl5ibr |
|
17 |
|
oveq2 |
|
18 |
|
oveq2 |
|
19 |
17 18
|
eqeq12d |
|
20 |
19
|
adantl |
|
21 |
20
|
adantl |
|
22 |
|
simpl |
|
23 |
|
simp3 |
|
24 |
|
divgcdnnr |
|
25 |
22 23 24
|
syl2anr |
|
26 |
|
simpl1 |
|
27 |
|
simpl2 |
|
28 |
|
moddvds |
|
29 |
25 26 27 28
|
syl3anc |
|
30 |
25
|
nnzd |
|
31 |
|
zsubcl |
|
32 |
31
|
3adant3 |
|
33 |
32
|
adantr |
|
34 |
30 33
|
jca |
|
35 |
|
divides |
|
36 |
34 35
|
syl |
|
37 |
21 29 36
|
3bitrd |
|
38 |
|
simpr |
|
39 |
30
|
adantr |
|
40 |
39
|
adantr |
|
41 |
38 40
|
zmulcld |
|
42 |
41
|
zcnd |
|
43 |
31
|
zcnd |
|
44 |
43
|
3adant3 |
|
45 |
44
|
ad3antrrr |
|
46 |
23
|
zcnd |
|
47 |
46
|
ad3antrrr |
|
48 |
|
simpr |
|
49 |
48
|
adantr |
|
50 |
42 45 47 49
|
mulcan2d |
|
51 |
|
zcn |
|
52 |
|
subdir |
|
53 |
1 4 51 52
|
syl3an |
|
54 |
53
|
ad3antrrr |
|
55 |
54
|
eqeq2d |
|
56 |
50 55
|
bitr3d |
|
57 |
|
nnz |
|
58 |
57
|
adantr |
|
59 |
|
simpr |
|
60 |
59
|
zcnd |
|
61 |
60
|
adantl |
|
62 |
46
|
adantr |
|
63 |
|
simpl |
|
64 |
63
|
nnzd |
|
65 |
23 64
|
anim12i |
|
66 |
|
gcdcl |
|
67 |
65 66
|
syl |
|
68 |
67
|
nn0cnd |
|
69 |
|
nnne0 |
|
70 |
69
|
neneqd |
|
71 |
70
|
adantr |
|
72 |
71
|
adantl |
|
73 |
72
|
intnand |
|
74 |
|
gcdeq0 |
|
75 |
65 74
|
syl |
|
76 |
75
|
necon3abid |
|
77 |
73 76
|
mpbird |
|
78 |
61 62 68 77
|
divassd |
|
79 |
59
|
adantl |
|
80 |
57 69
|
jca |
|
81 |
80
|
adantr |
|
82 |
23 81
|
anim12i |
|
83 |
|
3anass |
|
84 |
82 83
|
sylibr |
|
85 |
|
divgcdz |
|
86 |
84 85
|
syl |
|
87 |
79 86
|
zmulcld |
|
88 |
78 87
|
eqeltrd |
|
89 |
|
dvdsmul1 |
|
90 |
58 88 89
|
syl2an2 |
|
91 |
63
|
nncnd |
|
92 |
91
|
adantl |
|
93 |
|
divmulasscom |
|
94 |
61 92 62 68 77 93
|
syl32anc |
|
95 |
90 94
|
breqtrrd |
|
96 |
95
|
exp32 |
|
97 |
96
|
adantrd |
|
98 |
97
|
imp |
|
99 |
98
|
adantr |
|
100 |
99
|
imp |
|
101 |
|
breq2 |
|
102 |
100 101
|
syl5ibcom |
|
103 |
56 102
|
sylbid |
|
104 |
103
|
rexlimdva |
|
105 |
22
|
adantl |
|
106 |
|
zmulcl |
|
107 |
106
|
3adant2 |
|
108 |
107
|
adantr |
|
109 |
|
zmulcl |
|
110 |
109
|
3adant1 |
|
111 |
110
|
adantr |
|
112 |
|
moddvds |
|
113 |
105 108 111 112
|
syl3anc |
|
114 |
113
|
adantr |
|
115 |
104 114
|
sylibrd |
|
116 |
115
|
ex |
|
117 |
116
|
com23 |
|
118 |
37 117
|
sylbid |
|
119 |
118
|
imp |
|
120 |
119
|
com12 |
|
121 |
16 120
|
pm2.61ine |
|
122 |
121
|
ex |
|