Metamath Proof Explorer


Theorem cnconn

Description: Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009) (Proof shortened by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypothesis cnconn.2 Y = K
Assertion cnconn J Conn F : X onto Y F J Cn K K Conn

Proof

Step Hyp Ref Expression
1 cnconn.2 Y = K
2 cntop2 F J Cn K K Top
3 2 3ad2ant3 J Conn F : X onto Y F J Cn K K Top
4 df-ne x ¬ x =
5 eqid J = J
6 simpl1 J Conn F : X onto Y F J Cn K x K Clsd K x J Conn
7 simpl3 J Conn F : X onto Y F J Cn K x K Clsd K x F J Cn K
8 simprl J Conn F : X onto Y F J Cn K x K Clsd K x x K Clsd K
9 8 elin1d J Conn F : X onto Y F J Cn K x K Clsd K x x K
10 cnima F J Cn K x K F -1 x J
11 7 9 10 syl2anc J Conn F : X onto Y F J Cn K x K Clsd K x F -1 x J
12 elssuni x K x K
13 9 12 syl J Conn F : X onto Y F J Cn K x K Clsd K x x K
14 13 1 sseqtrrdi J Conn F : X onto Y F J Cn K x K Clsd K x x Y
15 simpl2 J Conn F : X onto Y F J Cn K x K Clsd K x F : X onto Y
16 forn F : X onto Y ran F = Y
17 15 16 syl J Conn F : X onto Y F J Cn K x K Clsd K x ran F = Y
18 14 17 sseqtrrd J Conn F : X onto Y F J Cn K x K Clsd K x x ran F
19 df-rn ran F = dom F -1
20 18 19 sseqtrdi J Conn F : X onto Y F J Cn K x K Clsd K x x dom F -1
21 sseqin2 x dom F -1 dom F -1 x = x
22 20 21 sylib J Conn F : X onto Y F J Cn K x K Clsd K x dom F -1 x = x
23 simprr J Conn F : X onto Y F J Cn K x K Clsd K x x
24 22 23 eqnetrd J Conn F : X onto Y F J Cn K x K Clsd K x dom F -1 x
25 imadisj F -1 x = dom F -1 x =
26 25 necon3bii F -1 x dom F -1 x
27 24 26 sylibr J Conn F : X onto Y F J Cn K x K Clsd K x F -1 x
28 8 elin2d J Conn F : X onto Y F J Cn K x K Clsd K x x Clsd K
29 cnclima F J Cn K x Clsd K F -1 x Clsd J
30 7 28 29 syl2anc J Conn F : X onto Y F J Cn K x K Clsd K x F -1 x Clsd J
31 5 6 11 27 30 connclo J Conn F : X onto Y F J Cn K x K Clsd K x F -1 x = J
32 5 1 cnf F J Cn K F : J Y
33 fdm F : J Y dom F = J
34 7 32 33 3syl J Conn F : X onto Y F J Cn K x K Clsd K x dom F = J
35 fof F : X onto Y F : X Y
36 fdm F : X Y dom F = X
37 15 35 36 3syl J Conn F : X onto Y F J Cn K x K Clsd K x dom F = X
38 31 34 37 3eqtr2d J Conn F : X onto Y F J Cn K x K Clsd K x F -1 x = X
39 38 imaeq2d J Conn F : X onto Y F J Cn K x K Clsd K x F F -1 x = F X
40 foimacnv F : X onto Y x Y F F -1 x = x
41 15 14 40 syl2anc J Conn F : X onto Y F J Cn K x K Clsd K x F F -1 x = x
42 foima F : X onto Y F X = Y
43 15 42 syl J Conn F : X onto Y F J Cn K x K Clsd K x F X = Y
44 39 41 43 3eqtr3d J Conn F : X onto Y F J Cn K x K Clsd K x x = Y
45 44 expr J Conn F : X onto Y F J Cn K x K Clsd K x x = Y
46 4 45 syl5bir J Conn F : X onto Y F J Cn K x K Clsd K ¬ x = x = Y
47 46 orrd J Conn F : X onto Y F J Cn K x K Clsd K x = x = Y
48 vex x V
49 48 elpr x Y x = x = Y
50 47 49 sylibr J Conn F : X onto Y F J Cn K x K Clsd K x Y
51 50 ex J Conn F : X onto Y F J Cn K x K Clsd K x Y
52 51 ssrdv J Conn F : X onto Y F J Cn K K Clsd K Y
53 1 isconn2 K Conn K Top K Clsd K Y
54 3 52 53 sylanbrc J Conn F : X onto Y F J Cn K K Conn