Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldbas |
|
2 |
1
|
a1i |
|
3 |
|
cnfldadd |
|
4 |
3
|
a1i |
|
5 |
|
mpocnfldmul |
|
6 |
5
|
a1i |
|
7 |
|
addcl |
|
8 |
|
addass |
|
9 |
|
0cn |
|
10 |
|
addlid |
|
11 |
|
negcl |
|
12 |
|
id |
|
13 |
11 12
|
addcomd |
|
14 |
|
negid |
|
15 |
13 14
|
eqtrd |
|
16 |
1 3 7 8 9 10 11 15
|
isgrpi |
|
17 |
16
|
a1i |
|
18 |
|
mpomulf |
|
19 |
18
|
fovcl |
|
20 |
19
|
3adant1 |
|
21 |
|
mulass |
|
22 |
|
mulcl |
|
23 |
|
ovmpot |
|
24 |
22 23
|
stoic3 |
|
25 |
|
simp1 |
|
26 |
|
mulcl |
|
27 |
26
|
3adant1 |
|
28 |
|
ovmpot |
|
29 |
25 27 28
|
syl2anc |
|
30 |
21 24 29
|
3eqtr4d |
|
31 |
|
ovmpot |
|
32 |
31
|
3adant3 |
|
33 |
32
|
oveq1d |
|
34 |
|
ovmpot |
|
35 |
34
|
3adant1 |
|
36 |
35
|
oveq2d |
|
37 |
30 33 36
|
3eqtr4d |
|
38 |
37
|
adantl |
|
39 |
|
adddi |
|
40 |
|
addcl |
|
41 |
40
|
3adant1 |
|
42 |
|
ovmpot |
|
43 |
25 41 42
|
syl2anc |
|
44 |
|
ovmpot |
|
45 |
44
|
3adant2 |
|
46 |
32 45
|
oveq12d |
|
47 |
39 43 46
|
3eqtr4d |
|
48 |
47
|
adantl |
|
49 |
|
adddir |
|
50 |
|
ovmpot |
|
51 |
7 50
|
stoic3 |
|
52 |
45 35
|
oveq12d |
|
53 |
49 51 52
|
3eqtr4d |
|
54 |
53
|
adantl |
|
55 |
|
1cnd |
|
56 |
|
ax-1cn |
|
57 |
|
ovmpot |
|
58 |
56 57
|
mpan |
|
59 |
|
mullid |
|
60 |
58 59
|
eqtrd |
|
61 |
60
|
adantl |
|
62 |
|
ovmpot |
|
63 |
56 62
|
mpan2 |
|
64 |
|
mulrid |
|
65 |
63 64
|
eqtrd |
|
66 |
65
|
adantl |
|
67 |
|
mulcom |
|
68 |
|
ovmpot |
|
69 |
68
|
ancoms |
|
70 |
67 31 69
|
3eqtr4d |
|
71 |
70
|
3adant1 |
|
72 |
2 4 6 17 20 38 48 54 55 61 66 71
|
iscrngd |
|
73 |
72
|
mptru |
|