Metamath Proof Explorer


Theorem cncrng

Description: The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015)

Ref Expression
Assertion cncrng fld CRing

Proof

Step Hyp Ref Expression
1 cnfldbas = Base fld
2 1 a1i = Base fld
3 cnfldadd + = + fld
4 3 a1i + = + fld
5 cnfldmul × = fld
6 5 a1i × = fld
7 addcl x y x + y
8 addass x y z x + y + z = x + y + z
9 0cn 0
10 addid2 x 0 + x = x
11 negcl x x
12 addcom x x - x + x = x + x
13 11 12 mpancom x - x + x = x + x
14 negid x x + x = 0
15 13 14 eqtrd x - x + x = 0
16 1 3 7 8 9 10 11 15 isgrpi fld Grp
17 16 a1i fld Grp
18 mulcl x y x y
19 18 3adant1 x y x y
20 mulass x y z x y z = x y z
21 20 adantl x y z x y z = x y z
22 adddi x y z x y + z = x y + x z
23 22 adantl x y z x y + z = x y + x z
24 adddir x y z x + y z = x z + y z
25 24 adantl x y z x + y z = x z + y z
26 1cnd 1
27 mulid2 x 1 x = x
28 27 adantl x 1 x = x
29 mulid1 x x 1 = x
30 29 adantl x x 1 = x
31 mulcom x y x y = y x
32 31 3adant1 x y x y = y x
33 2 4 6 17 19 21 23 25 26 28 30 32 iscrngd fld CRing
34 33 mptru fld CRing