Metamath Proof Explorer


Theorem cndis

Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cndis A V J TopOn X 𝒫 A Cn J = X A

Proof

Step Hyp Ref Expression
1 cnvimass f -1 x dom f
2 fdm f : A X dom f = A
3 2 adantl A V J TopOn X f : A X dom f = A
4 1 3 sseqtrid A V J TopOn X f : A X f -1 x A
5 elpw2g A V f -1 x 𝒫 A f -1 x A
6 5 ad2antrr A V J TopOn X f : A X f -1 x 𝒫 A f -1 x A
7 4 6 mpbird A V J TopOn X f : A X f -1 x 𝒫 A
8 7 ralrimivw A V J TopOn X f : A X x J f -1 x 𝒫 A
9 8 ex A V J TopOn X f : A X x J f -1 x 𝒫 A
10 9 pm4.71d A V J TopOn X f : A X f : A X x J f -1 x 𝒫 A
11 toponmax J TopOn X X J
12 id A V A V
13 elmapg X J A V f X A f : A X
14 11 12 13 syl2anr A V J TopOn X f X A f : A X
15 distopon A V 𝒫 A TopOn A
16 iscn 𝒫 A TopOn A J TopOn X f 𝒫 A Cn J f : A X x J f -1 x 𝒫 A
17 15 16 sylan A V J TopOn X f 𝒫 A Cn J f : A X x J f -1 x 𝒫 A
18 10 14 17 3bitr4rd A V J TopOn X f 𝒫 A Cn J f X A
19 18 eqrdv A V J TopOn X 𝒫 A Cn J = X A