Metamath Proof Explorer


Theorem cndrng

Description: The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Assertion cndrng fld DivRing

Proof

Step Hyp Ref Expression
1 cnfldbas = Base fld
2 1 a1i = Base fld
3 cnfldmul × = fld
4 3 a1i × = fld
5 cnfld0 0 = 0 fld
6 5 a1i 0 = 0 fld
7 cnfld1 1 = 1 fld
8 7 a1i 1 = 1 fld
9 cnring fld Ring
10 9 a1i fld Ring
11 mulne0 x x 0 y y 0 x y 0
12 11 3adant1 x x 0 y y 0 x y 0
13 ax-1ne0 1 0
14 13 a1i 1 0
15 reccl x x 0 1 x
16 15 adantl x x 0 1 x
17 recne0 x x 0 1 x 0
18 17 adantl x x 0 1 x 0
19 recid2 x x 0 1 x x = 1
20 19 adantl x x 0 1 x x = 1
21 2 4 6 8 10 12 14 16 18 20 isdrngd fld DivRing
22 21 mptru fld DivRing