Metamath Proof Explorer


Theorem cndrng

Description: The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014) Avoid ax-mulf . (Revised by GG, 30-Apr-2025)

Ref Expression
Assertion cndrng fld DivRing

Proof

Step Hyp Ref Expression
1 cnfldbas = Base fld
2 1 a1i = Base fld
3 mpocnfldmul u , v u v = fld
4 3 a1i u , v u v = fld
5 cnfld0 0 = 0 fld
6 5 a1i 0 = 0 fld
7 cnfld1 1 = 1 fld
8 7 a1i 1 = 1 fld
9 cnring fld Ring
10 9 a1i fld Ring
11 ovmpot x y x u , v u v y = x y
12 11 ad2ant2r x x 0 y y 0 x u , v u v y = x y
13 mulne0 x x 0 y y 0 x y 0
14 12 13 eqnetrd x x 0 y y 0 x u , v u v y 0
15 14 3adant1 x x 0 y y 0 x u , v u v y 0
16 ax-1ne0 1 0
17 16 a1i 1 0
18 reccl x x 0 1 x
19 18 adantl x x 0 1 x
20 simpl x x 0 x
21 ovmpot 1 x x 1 x u , v u v x = 1 x x
22 18 20 21 syl2anc x x 0 1 x u , v u v x = 1 x x
23 recid2 x x 0 1 x x = 1
24 22 23 eqtrd x x 0 1 x u , v u v x = 1
25 24 adantl x x 0 1 x u , v u v x = 1
26 2 4 6 8 10 15 17 19 25 isdrngd fld DivRing
27 26 mptru fld DivRing