Metamath Proof Explorer


Theorem cndrngOLD

Description: Obsolete version of cndrng as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cndrngOLD fld DivRing

Proof

Step Hyp Ref Expression
1 cnfldbas = Base fld
2 1 a1i = Base fld
3 cnfldmul × = fld
4 3 a1i × = fld
5 cnfld0 0 = 0 fld
6 5 a1i 0 = 0 fld
7 cnfld1 1 = 1 fld
8 7 a1i 1 = 1 fld
9 cnring fld Ring
10 9 a1i fld Ring
11 mulne0 x x 0 y y 0 x y 0
12 11 3adant1 x x 0 y y 0 x y 0
13 ax-1ne0 1 0
14 13 a1i 1 0
15 reccl x x 0 1 x
16 15 adantl x x 0 1 x
17 recid2 x x 0 1 x x = 1
18 17 adantl x x 0 1 x x = 1
19 2 4 6 8 10 12 14 16 18 isdrngd fld DivRing
20 19 mptru fld DivRing