Metamath Proof Explorer


Theorem cnegex2

Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion cnegex2 A x x + A = 0

Proof

Step Hyp Ref Expression
1 ax-icn i
2 1 1 mulcli i i
3 mulcl i i A i i A
4 2 3 mpan A i i A
5 mulid2 A 1 A = A
6 5 oveq2d A i i A + 1 A = i i A + A
7 ax-i2m1 i i + 1 = 0
8 7 oveq1i i i + 1 A = 0 A
9 ax-1cn 1
10 adddir i i 1 A i i + 1 A = i i A + 1 A
11 2 9 10 mp3an12 A i i + 1 A = i i A + 1 A
12 mul02 A 0 A = 0
13 8 11 12 3eqtr3a A i i A + 1 A = 0
14 6 13 eqtr3d A i i A + A = 0
15 oveq1 x = i i A x + A = i i A + A
16 15 eqeq1d x = i i A x + A = 0 i i A + A = 0
17 16 rspcev i i A i i A + A = 0 x x + A = 0
18 4 14 17 syl2anc A x x + A = 0