Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Initial properties of the complex numbers
cnegex2
Next ⟩
addid2
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnegex2
Description:
Existence of a left inverse for addition.
(Contributed by
Scott Fenton
, 3-Jan-2013)
Ref
Expression
Assertion
cnegex2
⊢
A
∈
ℂ
→
∃
x
∈
ℂ
x
+
A
=
0
Proof
Step
Hyp
Ref
Expression
1
ax-icn
⊢
i
∈
ℂ
2
1
1
mulcli
⊢
i
⁢
i
∈
ℂ
3
mulcl
⊢
i
⁢
i
∈
ℂ
∧
A
∈
ℂ
→
i
⁢
i
⁢
A
∈
ℂ
4
2
3
mpan
⊢
A
∈
ℂ
→
i
⁢
i
⁢
A
∈
ℂ
5
mulid2
⊢
A
∈
ℂ
→
1
⁢
A
=
A
6
5
oveq2d
⊢
A
∈
ℂ
→
i
⁢
i
⁢
A
+
1
⁢
A
=
i
⁢
i
⁢
A
+
A
7
ax-i2m1
⊢
i
⁢
i
+
1
=
0
8
7
oveq1i
⊢
i
⁢
i
+
1
⁢
A
=
0
⋅
A
9
ax-1cn
⊢
1
∈
ℂ
10
adddir
⊢
i
⁢
i
∈
ℂ
∧
1
∈
ℂ
∧
A
∈
ℂ
→
i
⁢
i
+
1
⁢
A
=
i
⁢
i
⁢
A
+
1
⁢
A
11
2
9
10
mp3an12
⊢
A
∈
ℂ
→
i
⁢
i
+
1
⁢
A
=
i
⁢
i
⁢
A
+
1
⁢
A
12
mul02
⊢
A
∈
ℂ
→
0
⋅
A
=
0
13
8
11
12
3eqtr3a
⊢
A
∈
ℂ
→
i
⁢
i
⁢
A
+
1
⁢
A
=
0
14
6
13
eqtr3d
⊢
A
∈
ℂ
→
i
⁢
i
⁢
A
+
A
=
0
15
oveq1
⊢
x
=
i
⁢
i
⁢
A
→
x
+
A
=
i
⁢
i
⁢
A
+
A
16
15
eqeq1d
⊢
x
=
i
⁢
i
⁢
A
→
x
+
A
=
0
↔
i
⁢
i
⁢
A
+
A
=
0
17
16
rspcev
⊢
i
⁢
i
⁢
A
∈
ℂ
∧
i
⁢
i
⁢
A
+
A
=
0
→
∃
x
∈
ℂ
x
+
A
=
0
18
4
14
17
syl2anc
⊢
A
∈
ℂ
→
∃
x
∈
ℂ
x
+
A
=
0