Metamath Proof Explorer


Theorem cnexALT

Description: The set of complex numbers exists. This theorem shows that ax-cnex is redundant if we assume ax-rep . See also ax-cnex . (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-Jun-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cnexALT V

Proof

Step Hyp Ref Expression
1 reexALT V
2 1 1 xpex 2 V
3 eqid x , y x + i y = x , y x + i y
4 3 cnref1o x , y x + i y : 2 1-1 onto
5 f1ofo x , y x + i y : 2 1-1 onto x , y x + i y : 2 onto
6 4 5 ax-mp x , y x + i y : 2 onto
7 fornex 2 V x , y x + i y : 2 onto V
8 2 6 7 mp2 V