Step |
Hyp |
Ref |
Expression |
1 |
|
cnextf.1 |
|
2 |
|
cnextf.2 |
|
3 |
|
cnextf.3 |
|
4 |
|
cnextf.4 |
|
5 |
|
cnextf.5 |
|
6 |
|
cnextf.a |
|
7 |
|
cnextf.6 |
|
8 |
|
cnextf.7 |
|
9 |
|
cnextcn.8 |
|
10 |
|
simpll |
|
11 |
|
simpll |
|
12 |
|
simpr3 |
|
13 |
3
|
ad2antrr |
|
14 |
|
simpr2 |
|
15 |
|
neii2 |
|
16 |
13 14 15
|
syl2anc |
|
17 |
|
vex |
|
18 |
17
|
snss |
|
19 |
18
|
biimpri |
|
20 |
19
|
anim1i |
|
21 |
20
|
anim2i |
|
22 |
21
|
anim2i |
|
23 |
22
|
ex |
|
24 |
|
3anass |
|
25 |
24
|
anbi1i |
|
26 |
|
anass |
|
27 |
|
anass |
|
28 |
27
|
anbi2i |
|
29 |
25 26 28
|
3bitri |
|
30 |
|
opnneip |
|
31 |
3 30
|
syl3an1 |
|
32 |
31
|
adantr |
|
33 |
|
simpr2 |
|
34 |
33
|
ex |
|
35 |
34
|
imdistanri |
|
36 |
32 35
|
jca |
|
37 |
29 36
|
sylbir |
|
38 |
23 37
|
syl6 |
|
39 |
38
|
adantr |
|
40 |
|
haustop |
|
41 |
4 40
|
syl |
|
42 |
|
imassrn |
|
43 |
5
|
frnd |
|
44 |
42 43
|
sstrid |
|
45 |
|
ssrin |
|
46 |
|
imass2 |
|
47 |
45 46
|
syl |
|
48 |
2
|
clsss |
|
49 |
41 44 47 48
|
syl2an3an |
|
50 |
|
sstr |
|
51 |
49 50
|
sylan |
|
52 |
51
|
an32s |
|
53 |
52
|
ex |
|
54 |
53
|
anim2d |
|
55 |
54
|
anim2d |
|
56 |
39 55
|
syld |
|
57 |
56
|
reximdv2 |
|
58 |
57
|
imp |
|
59 |
11 12 16 58
|
syl21anc |
|
60 |
59
|
3anassrs |
|
61 |
|
simpr |
|
62 |
|
simp-4l |
|
63 |
|
simplr |
|
64 |
|
imaeq2 |
|
65 |
64
|
fveq2d |
|
66 |
65
|
sseq1d |
|
67 |
66
|
biimpcd |
|
68 |
67
|
reximdv |
|
69 |
|
fvexd |
|
70 |
1
|
toptopon |
|
71 |
3 70
|
sylib |
|
72 |
71
|
elfvexd |
|
73 |
72 6
|
ssexd |
|
74 |
|
elrest |
|
75 |
69 73 74
|
syl2anc |
|
76 |
75
|
biimpa |
|
77 |
68 76
|
impel |
|
78 |
61 62 63 77
|
syl12anc |
|
79 |
|
eleq1w |
|
80 |
79
|
anbi2d |
|
81 |
|
sneq |
|
82 |
81
|
fveq2d |
|
83 |
82
|
oveq1d |
|
84 |
83
|
oveq2d |
|
85 |
84
|
fveq1d |
|
86 |
85
|
neeq1d |
|
87 |
80 86
|
imbi12d |
|
88 |
87 8
|
chvarvv |
|
89 |
1 2 3 4 5 6 7 88
|
cnextfvval |
|
90 |
|
fvex |
|
91 |
90
|
uniex |
|
92 |
91
|
snid |
|
93 |
4
|
adantr |
|
94 |
7
|
eleq2d |
|
95 |
94
|
biimpar |
|
96 |
71
|
adantr |
|
97 |
6
|
adantr |
|
98 |
|
simpr |
|
99 |
|
trnei |
|
100 |
96 97 98 99
|
syl3anc |
|
101 |
95 100
|
mpbid |
|
102 |
5
|
adantr |
|
103 |
2
|
hausflf2 |
|
104 |
93 101 102 8 103
|
syl31anc |
|
105 |
|
en1b |
|
106 |
104 105
|
sylib |
|
107 |
92 106
|
eleqtrrid |
|
108 |
89 107
|
eqeltrd |
|
109 |
2
|
toptopon |
|
110 |
41 109
|
sylib |
|
111 |
110
|
adantr |
|
112 |
|
flfnei |
|
113 |
111 101 102 112
|
syl3anc |
|
114 |
108 113
|
mpbid |
|
115 |
114
|
simprd |
|
116 |
115
|
r19.21bi |
|
117 |
116
|
ad4ant13 |
|
118 |
41
|
ad3antrrr |
|
119 |
|
simplr |
|
120 |
2
|
neii1 |
|
121 |
118 119 120
|
syl2anc |
|
122 |
|
simpr |
|
123 |
2
|
clsss |
|
124 |
|
sstr |
|
125 |
123 124
|
sylan |
|
126 |
125
|
3an1rs |
|
127 |
126
|
ex |
|
128 |
127
|
reximdv |
|
129 |
118 121 122 128
|
syl3anc |
|
130 |
129
|
adantllr |
|
131 |
117 130
|
mpd |
|
132 |
41
|
ad2antrr |
|
133 |
9
|
ad2antrr |
|
134 |
133
|
ad2antrr |
|
135 |
|
simplr |
|
136 |
|
simprl |
|
137 |
|
regsep |
|
138 |
134 135 136 137
|
syl3anc |
|
139 |
|
sstr |
|
140 |
139
|
expcom |
|
141 |
140
|
anim2d |
|
142 |
141
|
reximdv |
|
143 |
142
|
ad2antll |
|
144 |
138 143
|
mpd |
|
145 |
|
simpr |
|
146 |
|
neii2 |
|
147 |
|
fvex |
|
148 |
147
|
snss |
|
149 |
148
|
anbi1i |
|
150 |
149
|
biimpri |
|
151 |
150
|
reximi |
|
152 |
146 151
|
syl |
|
153 |
132 145 152
|
syl2anc |
|
154 |
144 153
|
r19.29a |
|
155 |
|
anass |
|
156 |
|
opnneip |
|
157 |
156
|
3expib |
|
158 |
157
|
anim1d |
|
159 |
155 158
|
syl5bir |
|
160 |
159
|
reximdv2 |
|
161 |
132 154 160
|
sylc |
|
162 |
131 161
|
r19.29a |
|
163 |
78 162
|
r19.29a |
|
164 |
60 163
|
r19.29a |
|
165 |
|
simplr |
|
166 |
|
simpll |
|
167 |
3
|
ad2antrr |
|
168 |
|
simplr |
|
169 |
1
|
eltopss |
|
170 |
167 168 169
|
syl2anc |
|
171 |
|
simpr |
|
172 |
170 171
|
sseldd |
|
173 |
|
fvexd |
|
174 |
73
|
ad2antrr |
|
175 |
|
opnneip |
|
176 |
3 175
|
syl3an1 |
|
177 |
176
|
3expa |
|
178 |
|
elrestr |
|
179 |
173 174 177 178
|
syl3anc |
|
180 |
1 2 3 4 5 6 7 8
|
cnextfvval |
|
181 |
180
|
adantr |
|
182 |
4
|
adantr |
|
183 |
7
|
eleq2d |
|
184 |
183
|
biimpar |
|
185 |
71
|
adantr |
|
186 |
6
|
adantr |
|
187 |
|
simpr |
|
188 |
|
trnei |
|
189 |
185 186 187 188
|
syl3anc |
|
190 |
184 189
|
mpbid |
|
191 |
5
|
adantr |
|
192 |
|
eleq1w |
|
193 |
192
|
anbi2d |
|
194 |
|
sneq |
|
195 |
194
|
fveq2d |
|
196 |
195
|
oveq1d |
|
197 |
196
|
oveq2d |
|
198 |
197
|
fveq1d |
|
199 |
198
|
neeq1d |
|
200 |
193 199
|
imbi12d |
|
201 |
200 8
|
chvarvv |
|
202 |
2
|
hausflf2 |
|
203 |
182 190 191 201 202
|
syl31anc |
|
204 |
|
en1b |
|
205 |
203 204
|
sylib |
|
206 |
205
|
adantr |
|
207 |
110
|
adantr |
|
208 |
|
flfval |
|
209 |
207 190 191 208
|
syl3anc |
|
210 |
209
|
adantr |
|
211 |
4
|
uniexd |
|
212 |
211
|
ad2antrr |
|
213 |
2 212
|
eqeltrid |
|
214 |
190
|
adantr |
|
215 |
|
filfbas |
|
216 |
214 215
|
syl |
|
217 |
5
|
ad2antrr |
|
218 |
|
simpr |
|
219 |
|
fgfil |
|
220 |
190 219
|
syl |
|
221 |
220
|
adantr |
|
222 |
218 221
|
eleqtrrd |
|
223 |
|
eqid |
|
224 |
223
|
imaelfm |
|
225 |
213 216 217 222 224
|
syl31anc |
|
226 |
|
flimclsi |
|
227 |
225 226
|
syl |
|
228 |
210 227
|
eqsstrd |
|
229 |
206 228
|
eqsstrrd |
|
230 |
|
fvex |
|
231 |
230
|
uniex |
|
232 |
231
|
snss |
|
233 |
229 232
|
sylibr |
|
234 |
181 233
|
eqeltrd |
|
235 |
166 172 179 234
|
syl21anc |
|
236 |
235
|
adantlr |
|
237 |
165 236
|
sseldd |
|
238 |
237
|
ralrimiva |
|
239 |
238
|
expl |
|
240 |
239
|
reximdv |
|
241 |
240
|
ad2antrr |
|
242 |
164 241
|
mpd |
|
243 |
1 2 3 4 5 6 7 8
|
cnextf |
|
244 |
243
|
ffund |
|
245 |
244
|
adantr |
|
246 |
1
|
neii1 |
|
247 |
3 246
|
sylan |
|
248 |
243
|
fdmd |
|
249 |
248
|
adantr |
|
250 |
247 249
|
sseqtrrd |
|
251 |
|
funimass4 |
|
252 |
245 250 251
|
syl2anc |
|
253 |
252
|
biimprd |
|
254 |
253
|
reximdva |
|
255 |
10 242 254
|
sylc |
|
256 |
255
|
ralrimiva |
|
257 |
256
|
ralrimiva |
|
258 |
1 2
|
cnnei |
|
259 |
3 41 243 258
|
syl3anc |
|
260 |
257 259
|
mpbird |
|