Description: F and its extension by continuity agree on the domain of F . (Contributed by Thierry Arnoux, 29-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextfres.c | |
|
| cnextfres.b | |
||
| cnextfres.j | |
||
| cnextfres.k | |
||
| cnextfres.a | |
||
| cnextfres.1 | |
||
| cnextfres.x | |
||
| Assertion | cnextfres | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextfres.c | |
|
| 2 | cnextfres.b | |
|
| 3 | cnextfres.j | |
|
| 4 | cnextfres.k | |
|
| 5 | cnextfres.a | |
|
| 6 | cnextfres.1 | |
|
| 7 | cnextfres.x | |
|
| 8 | eqid | |
|
| 9 | 8 2 | cnf | |
| 10 | 6 9 | syl | |
| 11 | 1 | restuni | |
| 12 | 3 5 11 | syl2anc | |
| 13 | 12 | feq2d | |
| 14 | 10 13 | mpbird | |
| 15 | 1 2 | cnextfun | |
| 16 | 3 4 14 5 15 | syl22anc | |
| 17 | 1 | sscls | |
| 18 | 3 5 17 | syl2anc | |
| 19 | 18 7 | sseldd | |
| 20 | 1 2 3 5 6 7 | flfcntr | |
| 21 | sneq | |
|
| 22 | 21 | fveq2d | |
| 23 | 22 | oveq1d | |
| 24 | 23 | oveq2d | |
| 25 | 24 | fveq1d | |
| 26 | 25 | opeliunxp2 | |
| 27 | 19 20 26 | sylanbrc | |
| 28 | haustop | |
|
| 29 | 4 28 | syl | |
| 30 | 1 2 | cnextfval | |
| 31 | 3 29 14 5 30 | syl22anc | |
| 32 | 27 31 | eleqtrrd | |
| 33 | df-br | |
|
| 34 | 32 33 | sylibr | |
| 35 | funbrfv | |
|
| 36 | 16 34 35 | sylc | |