Metamath Proof Explorer


Theorem cnextfres

Description: F and its extension by continuity agree on the domain of F . (Contributed by Thierry Arnoux, 29-Aug-2020)

Ref Expression
Hypotheses cnextfres.c C = J
cnextfres.b B = K
cnextfres.j φ J Top
cnextfres.k φ K Haus
cnextfres.a φ A C
cnextfres.1 φ F J 𝑡 A Cn K
cnextfres.x φ X A
Assertion cnextfres φ J CnExt K F X = F X

Proof

Step Hyp Ref Expression
1 cnextfres.c C = J
2 cnextfres.b B = K
3 cnextfres.j φ J Top
4 cnextfres.k φ K Haus
5 cnextfres.a φ A C
6 cnextfres.1 φ F J 𝑡 A Cn K
7 cnextfres.x φ X A
8 eqid J 𝑡 A = J 𝑡 A
9 8 2 cnf F J 𝑡 A Cn K F : J 𝑡 A B
10 6 9 syl φ F : J 𝑡 A B
11 1 restuni J Top A C A = J 𝑡 A
12 3 5 11 syl2anc φ A = J 𝑡 A
13 12 feq2d φ F : A B F : J 𝑡 A B
14 10 13 mpbird φ F : A B
15 1 2 cnextfun J Top K Haus F : A B A C Fun J CnExt K F
16 3 4 14 5 15 syl22anc φ Fun J CnExt K F
17 1 sscls J Top A C A cls J A
18 3 5 17 syl2anc φ A cls J A
19 18 7 sseldd φ X cls J A
20 1 2 3 5 6 7 flfcntr φ F X K fLimf nei J X 𝑡 A F
21 sneq x = X x = X
22 21 fveq2d x = X nei J x = nei J X
23 22 oveq1d x = X nei J x 𝑡 A = nei J X 𝑡 A
24 23 oveq2d x = X K fLimf nei J x 𝑡 A = K fLimf nei J X 𝑡 A
25 24 fveq1d x = X K fLimf nei J x 𝑡 A F = K fLimf nei J X 𝑡 A F
26 25 opeliunxp2 X F X x cls J A x × K fLimf nei J x 𝑡 A F X cls J A F X K fLimf nei J X 𝑡 A F
27 19 20 26 sylanbrc φ X F X x cls J A x × K fLimf nei J x 𝑡 A F
28 haustop K Haus K Top
29 4 28 syl φ K Top
30 1 2 cnextfval J Top K Top F : A B A C J CnExt K F = x cls J A x × K fLimf nei J x 𝑡 A F
31 3 29 14 5 30 syl22anc φ J CnExt K F = x cls J A x × K fLimf nei J x 𝑡 A F
32 27 31 eleqtrrd φ X F X J CnExt K F
33 df-br X J CnExt K F F X X F X J CnExt K F
34 32 33 sylibr φ X J CnExt K F F X
35 funbrfv Fun J CnExt K F X J CnExt K F F X J CnExt K F X = F X
36 16 34 35 sylc φ J CnExt K F X = F X