Metamath Proof Explorer


Theorem cnextfval

Description: The continuous extension of a given function F . (Contributed by Thierry Arnoux, 1-Dec-2017)

Ref Expression
Hypotheses cnextfval.1 X = J
cnextfval.2 B = K
Assertion cnextfval J Top K Top F : A B A X J CnExt K F = x cls J A x × K fLimf nei J x 𝑡 A F

Proof

Step Hyp Ref Expression
1 cnextfval.1 X = J
2 cnextfval.2 B = K
3 cnextval J Top K Top J CnExt K = f K 𝑝𝑚 J x cls J dom f x × K fLimf nei J x 𝑡 dom f f
4 3 adantr J Top K Top F : A B A X J CnExt K = f K 𝑝𝑚 J x cls J dom f x × K fLimf nei J x 𝑡 dom f f
5 simpr J Top K Top F : A B A X f = F f = F
6 5 dmeqd J Top K Top F : A B A X f = F dom f = dom F
7 simplrl J Top K Top F : A B A X f = F F : A B
8 7 fdmd J Top K Top F : A B A X f = F dom F = A
9 6 8 eqtrd J Top K Top F : A B A X f = F dom f = A
10 9 fveq2d J Top K Top F : A B A X f = F cls J dom f = cls J A
11 9 oveq2d J Top K Top F : A B A X f = F nei J x 𝑡 dom f = nei J x 𝑡 A
12 11 oveq2d J Top K Top F : A B A X f = F K fLimf nei J x 𝑡 dom f = K fLimf nei J x 𝑡 A
13 12 5 fveq12d J Top K Top F : A B A X f = F K fLimf nei J x 𝑡 dom f f = K fLimf nei J x 𝑡 A F
14 13 xpeq2d J Top K Top F : A B A X f = F x × K fLimf nei J x 𝑡 dom f f = x × K fLimf nei J x 𝑡 A F
15 10 14 iuneq12d J Top K Top F : A B A X f = F x cls J dom f x × K fLimf nei J x 𝑡 dom f f = x cls J A x × K fLimf nei J x 𝑡 A F
16 uniexg K Top K V
17 16 ad2antlr J Top K Top F : A B A X K V
18 uniexg J Top J V
19 18 ad2antrr J Top K Top F : A B A X J V
20 eqid A = A
21 20 2 feq23i F : A B F : A K
22 21 biimpi F : A B F : A K
23 22 ad2antrl J Top K Top F : A B A X F : A K
24 1 sseq2i A X A J
25 24 biimpi A X A J
26 25 ad2antll J Top K Top F : A B A X A J
27 elpm2r K V J V F : A K A J F K 𝑝𝑚 J
28 17 19 23 26 27 syl22anc J Top K Top F : A B A X F K 𝑝𝑚 J
29 fvex cls J A V
30 snex x V
31 fvex K fLimf nei J x 𝑡 A F V
32 30 31 xpex x × K fLimf nei J x 𝑡 A F V
33 29 32 iunex x cls J A x × K fLimf nei J x 𝑡 A F V
34 33 a1i J Top K Top F : A B A X x cls J A x × K fLimf nei J x 𝑡 A F V
35 4 15 28 34 fvmptd J Top K Top F : A B A X J CnExt K F = x cls J A x × K fLimf nei J x 𝑡 A F