Metamath Proof Explorer


Theorem cnextfvval

Description: The value of the continuous extension of a given function F at a point X . (Contributed by Thierry Arnoux, 21-Dec-2017)

Ref Expression
Hypotheses cnextf.1 C = J
cnextf.2 B = K
cnextf.3 φ J Top
cnextf.4 φ K Haus
cnextf.5 φ F : A B
cnextf.a φ A C
cnextf.6 φ cls J A = C
cnextf.7 φ x C K fLimf nei J x 𝑡 A F
Assertion cnextfvval φ X C J CnExt K F X = K fLimf nei J X 𝑡 A F

Proof

Step Hyp Ref Expression
1 cnextf.1 C = J
2 cnextf.2 B = K
3 cnextf.3 φ J Top
4 cnextf.4 φ K Haus
5 cnextf.5 φ F : A B
6 cnextf.a φ A C
7 cnextf.6 φ cls J A = C
8 cnextf.7 φ x C K fLimf nei J x 𝑡 A F
9 3 adantr φ X C J Top
10 4 adantr φ X C K Haus
11 5 adantr φ X C F : A B
12 6 adantr φ X C A C
13 1 2 cnextfun J Top K Haus F : A B A C Fun J CnExt K F
14 9 10 11 12 13 syl22anc φ X C Fun J CnExt K F
15 7 eleq2d φ X cls J A X C
16 15 biimpar φ X C X cls J A
17 fvex K fLimf nei J X 𝑡 A F V
18 17 uniex K fLimf nei J X 𝑡 A F V
19 18 snid K fLimf nei J X 𝑡 A F K fLimf nei J X 𝑡 A F
20 sneq x = X x = X
21 20 fveq2d x = X nei J x = nei J X
22 21 oveq1d x = X nei J x 𝑡 A = nei J X 𝑡 A
23 22 oveq2d x = X K fLimf nei J x 𝑡 A = K fLimf nei J X 𝑡 A
24 23 fveq1d x = X K fLimf nei J x 𝑡 A F = K fLimf nei J X 𝑡 A F
25 24 breq1d x = X K fLimf nei J x 𝑡 A F 1 𝑜 K fLimf nei J X 𝑡 A F 1 𝑜
26 25 imbi2d x = X φ K fLimf nei J x 𝑡 A F 1 𝑜 φ K fLimf nei J X 𝑡 A F 1 𝑜
27 4 adantr φ x C K Haus
28 3 adantr φ x C J Top
29 1 toptopon J Top J TopOn C
30 28 29 sylib φ x C J TopOn C
31 6 adantr φ x C A C
32 simpr φ x C x C
33 7 eleq2d φ x cls J A x C
34 33 biimpar φ x C x cls J A
35 trnei J TopOn C A C x C x cls J A nei J x 𝑡 A Fil A
36 35 biimpa J TopOn C A C x C x cls J A nei J x 𝑡 A Fil A
37 30 31 32 34 36 syl31anc φ x C nei J x 𝑡 A Fil A
38 5 adantr φ x C F : A B
39 2 hausflf2 K Haus nei J x 𝑡 A Fil A F : A B K fLimf nei J x 𝑡 A F K fLimf nei J x 𝑡 A F 1 𝑜
40 27 37 38 8 39 syl31anc φ x C K fLimf nei J x 𝑡 A F 1 𝑜
41 40 expcom x C φ K fLimf nei J x 𝑡 A F 1 𝑜
42 26 41 vtoclga X C φ K fLimf nei J X 𝑡 A F 1 𝑜
43 42 impcom φ X C K fLimf nei J X 𝑡 A F 1 𝑜
44 en1b K fLimf nei J X 𝑡 A F 1 𝑜 K fLimf nei J X 𝑡 A F = K fLimf nei J X 𝑡 A F
45 43 44 sylib φ X C K fLimf nei J X 𝑡 A F = K fLimf nei J X 𝑡 A F
46 19 45 eleqtrrid φ X C K fLimf nei J X 𝑡 A F K fLimf nei J X 𝑡 A F
47 nfiu1 _ x x cls J A x × K fLimf nei J x 𝑡 A F
48 47 nfel2 x X K fLimf nei J X 𝑡 A F x cls J A x × K fLimf nei J x 𝑡 A F
49 nfv x X cls J A K fLimf nei J X 𝑡 A F K fLimf nei J X 𝑡 A F
50 48 49 nfbi x X K fLimf nei J X 𝑡 A F x cls J A x × K fLimf nei J x 𝑡 A F X cls J A K fLimf nei J X 𝑡 A F K fLimf nei J X 𝑡 A F
51 opeq1 x = X x K fLimf nei J X 𝑡 A F = X K fLimf nei J X 𝑡 A F
52 51 eleq1d x = X x K fLimf nei J X 𝑡 A F x cls J A x × K fLimf nei J x 𝑡 A F X K fLimf nei J X 𝑡 A F x cls J A x × K fLimf nei J x 𝑡 A F
53 eleq1 x = X x cls J A X cls J A
54 24 eleq2d x = X K fLimf nei J X 𝑡 A F K fLimf nei J x 𝑡 A F K fLimf nei J X 𝑡 A F K fLimf nei J X 𝑡 A F
55 53 54 anbi12d x = X x cls J A K fLimf nei J X 𝑡 A F K fLimf nei J x 𝑡 A F X cls J A K fLimf nei J X 𝑡 A F K fLimf nei J X 𝑡 A F
56 52 55 bibi12d x = X x K fLimf nei J X 𝑡 A F x cls J A x × K fLimf nei J x 𝑡 A F x cls J A K fLimf nei J X 𝑡 A F K fLimf nei J x 𝑡 A F X K fLimf nei J X 𝑡 A F x cls J A x × K fLimf nei J x 𝑡 A F X cls J A K fLimf nei J X 𝑡 A F K fLimf nei J X 𝑡 A F
57 opeliunxp x K fLimf nei J X 𝑡 A F x cls J A x × K fLimf nei J x 𝑡 A F x cls J A K fLimf nei J X 𝑡 A F K fLimf nei J x 𝑡 A F
58 50 56 57 vtoclg1f X C X K fLimf nei J X 𝑡 A F x cls J A x × K fLimf nei J x 𝑡 A F X cls J A K fLimf nei J X 𝑡 A F K fLimf nei J X 𝑡 A F
59 58 adantl φ X C X K fLimf nei J X 𝑡 A F x cls J A x × K fLimf nei J x 𝑡 A F X cls J A K fLimf nei J X 𝑡 A F K fLimf nei J X 𝑡 A F
60 16 46 59 mpbir2and φ X C X K fLimf nei J X 𝑡 A F x cls J A x × K fLimf nei J x 𝑡 A F
61 df-br X J CnExt K F K fLimf nei J X 𝑡 A F X K fLimf nei J X 𝑡 A F J CnExt K F
62 haustop K Haus K Top
63 4 62 syl φ K Top
64 63 adantr φ X C K Top
65 1 2 cnextfval J Top K Top F : A B A C J CnExt K F = x cls J A x × K fLimf nei J x 𝑡 A F
66 9 64 11 12 65 syl22anc φ X C J CnExt K F = x cls J A x × K fLimf nei J x 𝑡 A F
67 66 eleq2d φ X C X K fLimf nei J X 𝑡 A F J CnExt K F X K fLimf nei J X 𝑡 A F x cls J A x × K fLimf nei J x 𝑡 A F
68 61 67 syl5bb φ X C X J CnExt K F K fLimf nei J X 𝑡 A F X K fLimf nei J X 𝑡 A F x cls J A x × K fLimf nei J x 𝑡 A F
69 60 68 mpbird φ X C X J CnExt K F K fLimf nei J X 𝑡 A F
70 funbrfv Fun J CnExt K F X J CnExt K F K fLimf nei J X 𝑡 A F J CnExt K F X = K fLimf nei J X 𝑡 A F
71 14 69 70 sylc φ X C J CnExt K F X = K fLimf nei J X 𝑡 A F