Metamath Proof Explorer


Theorem cnextrel

Description: In the general case, a continuous extension is a relation. (Contributed by Thierry Arnoux, 20-Dec-2017)

Ref Expression
Hypotheses cnextfrel.1 C = J
cnextfrel.2 B = K
Assertion cnextrel J Top K Top F : A B A C Rel J CnExt K F

Proof

Step Hyp Ref Expression
1 cnextfrel.1 C = J
2 cnextfrel.2 B = K
3 relxp Rel x × K fLimf nei J x 𝑡 A F
4 3 rgenw x cls J A Rel x × K fLimf nei J x 𝑡 A F
5 reliun Rel x cls J A x × K fLimf nei J x 𝑡 A F x cls J A Rel x × K fLimf nei J x 𝑡 A F
6 4 5 mpbir Rel x cls J A x × K fLimf nei J x 𝑡 A F
7 1 2 cnextfval J Top K Top F : A B A C J CnExt K F = x cls J A x × K fLimf nei J x 𝑡 A F
8 7 releqd J Top K Top F : A B A C Rel J CnExt K F Rel x cls J A x × K fLimf nei J x 𝑡 A F
9 6 8 mpbiri J Top K Top F : A B A C Rel J CnExt K F