Metamath Proof Explorer


Theorem cnextval

Description: The function applying continuous extension to a given function f . (Contributed by Thierry Arnoux, 1-Dec-2017)

Ref Expression
Assertion cnextval J Top K Top J CnExt K = f K 𝑝𝑚 J x cls J dom f x × K fLimf nei J x 𝑡 dom f f

Proof

Step Hyp Ref Expression
1 unieq j = J j = J
2 1 oveq2d j = J k 𝑝𝑚 j = k 𝑝𝑚 J
3 fveq2 j = J cls j = cls J
4 3 fveq1d j = J cls j dom f = cls J dom f
5 fveq2 j = J nei j = nei J
6 5 fveq1d j = J nei j x = nei J x
7 6 oveq1d j = J nei j x 𝑡 dom f = nei J x 𝑡 dom f
8 7 oveq2d j = J k fLimf nei j x 𝑡 dom f = k fLimf nei J x 𝑡 dom f
9 8 fveq1d j = J k fLimf nei j x 𝑡 dom f f = k fLimf nei J x 𝑡 dom f f
10 9 xpeq2d j = J x × k fLimf nei j x 𝑡 dom f f = x × k fLimf nei J x 𝑡 dom f f
11 4 10 iuneq12d j = J x cls j dom f x × k fLimf nei j x 𝑡 dom f f = x cls J dom f x × k fLimf nei J x 𝑡 dom f f
12 2 11 mpteq12dv j = J f k 𝑝𝑚 j x cls j dom f x × k fLimf nei j x 𝑡 dom f f = f k 𝑝𝑚 J x cls J dom f x × k fLimf nei J x 𝑡 dom f f
13 unieq k = K k = K
14 13 oveq1d k = K k 𝑝𝑚 J = K 𝑝𝑚 J
15 oveq1 k = K k fLimf nei J x 𝑡 dom f = K fLimf nei J x 𝑡 dom f
16 15 fveq1d k = K k fLimf nei J x 𝑡 dom f f = K fLimf nei J x 𝑡 dom f f
17 16 xpeq2d k = K x × k fLimf nei J x 𝑡 dom f f = x × K fLimf nei J x 𝑡 dom f f
18 17 iuneq2d k = K x cls J dom f x × k fLimf nei J x 𝑡 dom f f = x cls J dom f x × K fLimf nei J x 𝑡 dom f f
19 14 18 mpteq12dv k = K f k 𝑝𝑚 J x cls J dom f x × k fLimf nei J x 𝑡 dom f f = f K 𝑝𝑚 J x cls J dom f x × K fLimf nei J x 𝑡 dom f f
20 df-cnext CnExt = j Top , k Top f k 𝑝𝑚 j x cls j dom f x × k fLimf nei j x 𝑡 dom f f
21 ovex K 𝑝𝑚 J V
22 21 mptex f K 𝑝𝑚 J x cls J dom f x × K fLimf nei J x 𝑡 dom f f V
23 12 19 20 22 ovmpo J Top K Top J CnExt K = f K 𝑝𝑚 J x cls J dom f x × K fLimf nei J x 𝑡 dom f f