Metamath Proof Explorer


Theorem cnf

Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypotheses iscnp2.1 X = J
iscnp2.2 Y = K
Assertion cnf F J Cn K F : X Y

Proof

Step Hyp Ref Expression
1 iscnp2.1 X = J
2 iscnp2.2 Y = K
3 1 2 iscn2 F J Cn K J Top K Top F : X Y x K F -1 x J
4 3 simprbi F J Cn K F : X Y x K F -1 x J
5 4 simpld F J Cn K F : X Y