Database
BASIC TOPOLOGY
Topology
Limits and continuity in topological spaces
cnf2
Next ⟩
cnpf2
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnf2
Description:
A continuous function is a mapping.
(Contributed by
Mario Carneiro
, 21-Aug-2015)
Ref
Expression
Assertion
cnf2
⊢
J
∈
TopOn
⁡
X
∧
K
∈
TopOn
⁡
Y
∧
F
∈
J
Cn
K
→
F
:
X
⟶
Y
Proof
Step
Hyp
Ref
Expression
1
iscn
⊢
J
∈
TopOn
⁡
X
∧
K
∈
TopOn
⁡
Y
→
F
∈
J
Cn
K
↔
F
:
X
⟶
Y
∧
∀
x
∈
K
F
-1
x
∈
J
2
1
simprbda
⊢
J
∈
TopOn
⁡
X
∧
K
∈
TopOn
⁡
Y
∧
F
∈
J
Cn
K
→
F
:
X
⟶
Y
3
2
3impa
⊢
J
∈
TopOn
⁡
X
∧
K
∈
TopOn
⁡
Y
∧
F
∈
J
Cn
K
→
F
:
X
⟶
Y