Metamath Proof Explorer


Theorem cnfcf

Description: Continuity of a function in terms of cluster points of a function. (Contributed by Jeff Hankins, 28-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion cnfcf J TopOn X K TopOn Y F J Cn K F : X Y f Fil X x J fClus f F x K fClusf f F

Proof

Step Hyp Ref Expression
1 cncnp J TopOn X K TopOn Y F J Cn K F : X Y x X F J CnP K x
2 simplr J TopOn X K TopOn Y F : X Y x X F : X Y
3 cnpfcf J TopOn X K TopOn Y x X F J CnP K x F : X Y f Fil X x J fClus f F x K fClusf f F
4 3 ad4ant124 J TopOn X K TopOn Y F : X Y x X F J CnP K x F : X Y f Fil X x J fClus f F x K fClusf f F
5 2 4 mpbirand J TopOn X K TopOn Y F : X Y x X F J CnP K x f Fil X x J fClus f F x K fClusf f F
6 5 ralbidva J TopOn X K TopOn Y F : X Y x X F J CnP K x x X f Fil X x J fClus f F x K fClusf f F
7 ralcom x X f Fil X x J fClus f F x K fClusf f F f Fil X x X x J fClus f F x K fClusf f F
8 eqid J = J
9 8 fclselbas x J fClus f x J
10 toponuni J TopOn X X = J
11 10 ad2antrr J TopOn X K TopOn Y F : X Y X = J
12 11 eleq2d J TopOn X K TopOn Y F : X Y x X x J
13 9 12 syl5ibr J TopOn X K TopOn Y F : X Y x J fClus f x X
14 13 pm4.71rd J TopOn X K TopOn Y F : X Y x J fClus f x X x J fClus f
15 14 imbi1d J TopOn X K TopOn Y F : X Y x J fClus f F x K fClusf f F x X x J fClus f F x K fClusf f F
16 impexp x X x J fClus f F x K fClusf f F x X x J fClus f F x K fClusf f F
17 15 16 bitrdi J TopOn X K TopOn Y F : X Y x J fClus f F x K fClusf f F x X x J fClus f F x K fClusf f F
18 17 ralbidv2 J TopOn X K TopOn Y F : X Y x J fClus f F x K fClusf f F x X x J fClus f F x K fClusf f F
19 18 ralbidv J TopOn X K TopOn Y F : X Y f Fil X x J fClus f F x K fClusf f F f Fil X x X x J fClus f F x K fClusf f F
20 7 19 bitr4id J TopOn X K TopOn Y F : X Y x X f Fil X x J fClus f F x K fClusf f F f Fil X x J fClus f F x K fClusf f F
21 6 20 bitrd J TopOn X K TopOn Y F : X Y x X F J CnP K x f Fil X x J fClus f F x K fClusf f F
22 21 pm5.32da J TopOn X K TopOn Y F : X Y x X F J CnP K x F : X Y f Fil X x J fClus f F x K fClusf f F
23 1 22 bitrd J TopOn X K TopOn Y F J Cn K F : X Y f Fil X x J fClus f F x K fClusf f F