Metamath Proof Explorer


Theorem cnfcom2lem

Description: Lemma for cnfcom2 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)

Ref Expression
Hypotheses cnfcom.s S = dom ω CNF A
cnfcom.a φ A On
cnfcom.b φ B ω 𝑜 A
cnfcom.f F = ω CNF A -1 B
cnfcom.g G = OrdIso E F supp
cnfcom.h H = seq ω k V , z V M + 𝑜 z
cnfcom.t T = seq ω k V , f V K
cnfcom.m M = ω 𝑜 G k 𝑜 F G k
cnfcom.k K = x M dom f + 𝑜 x x dom f M + 𝑜 x -1
cnfcom.w W = G dom G
cnfcom2.1 φ B
Assertion cnfcom2lem φ dom G = suc dom G

Proof

Step Hyp Ref Expression
1 cnfcom.s S = dom ω CNF A
2 cnfcom.a φ A On
3 cnfcom.b φ B ω 𝑜 A
4 cnfcom.f F = ω CNF A -1 B
5 cnfcom.g G = OrdIso E F supp
6 cnfcom.h H = seq ω k V , z V M + 𝑜 z
7 cnfcom.t T = seq ω k V , f V K
8 cnfcom.m M = ω 𝑜 G k 𝑜 F G k
9 cnfcom.k K = x M dom f + 𝑜 x x dom f M + 𝑜 x -1
10 cnfcom.w W = G dom G
11 cnfcom2.1 φ B
12 n0i B ¬ B =
13 11 12 syl φ ¬ B =
14 omelon ω On
15 14 a1i φ ω On
16 1 15 2 cantnff1o φ ω CNF A : S 1-1 onto ω 𝑜 A
17 f1ocnv ω CNF A : S 1-1 onto ω 𝑜 A ω CNF A -1 : ω 𝑜 A 1-1 onto S
18 f1of ω CNF A -1 : ω 𝑜 A 1-1 onto S ω CNF A -1 : ω 𝑜 A S
19 16 17 18 3syl φ ω CNF A -1 : ω 𝑜 A S
20 19 3 ffvelrnd φ ω CNF A -1 B S
21 4 20 eqeltrid φ F S
22 1 15 2 cantnfs φ F S F : A ω finSupp F
23 21 22 mpbid φ F : A ω finSupp F
24 23 simpld φ F : A ω
25 24 adantr φ dom G = F : A ω
26 25 feqmptd φ dom G = F = x A F x
27 dif0 A = A
28 27 eleq2i x A x A
29 simpr φ dom G = dom G =
30 ovexd φ F supp V
31 1 15 2 5 21 cantnfcl φ E We supp F dom G ω
32 31 simpld φ E We supp F
33 5 oien F supp V E We supp F dom G supp F
34 30 32 33 syl2anc φ dom G supp F
35 34 adantr φ dom G = dom G supp F
36 29 35 eqbrtrrd φ dom G = supp F
37 36 ensymd φ dom G = supp F
38 en0 supp F F supp =
39 37 38 sylib φ dom G = F supp =
40 ss0b F supp F supp =
41 39 40 sylibr φ dom G = F supp
42 2 adantr φ dom G = A On
43 0ex V
44 43 a1i φ dom G = V
45 25 41 42 44 suppssr φ dom G = x A F x =
46 28 45 sylan2br φ dom G = x A F x =
47 46 mpteq2dva φ dom G = x A F x = x A
48 26 47 eqtrd φ dom G = F = x A
49 fconstmpt A × = x A
50 48 49 eqtr4di φ dom G = F = A ×
51 50 fveq2d φ dom G = ω CNF A F = ω CNF A A ×
52 4 fveq2i ω CNF A F = ω CNF A ω CNF A -1 B
53 f1ocnvfv2 ω CNF A : S 1-1 onto ω 𝑜 A B ω 𝑜 A ω CNF A ω CNF A -1 B = B
54 16 3 53 syl2anc φ ω CNF A ω CNF A -1 B = B
55 52 54 eqtrid φ ω CNF A F = B
56 55 adantr φ dom G = ω CNF A F = B
57 peano1 ω
58 57 a1i φ ω
59 1 15 2 58 cantnf0 φ ω CNF A A × =
60 59 adantr φ dom G = ω CNF A A × =
61 51 56 60 3eqtr3d φ dom G = B =
62 13 61 mtand φ ¬ dom G =
63 nnlim dom G ω ¬ Lim dom G
64 31 63 simpl2im φ ¬ Lim dom G
65 ioran ¬ dom G = Lim dom G ¬ dom G = ¬ Lim dom G
66 62 64 65 sylanbrc φ ¬ dom G = Lim dom G
67 5 oicl Ord dom G
68 unizlim Ord dom G dom G = dom G dom G = Lim dom G
69 67 68 ax-mp dom G = dom G dom G = Lim dom G
70 66 69 sylnibr φ ¬ dom G = dom G
71 orduniorsuc Ord dom G dom G = dom G dom G = suc dom G
72 67 71 mp1i φ dom G = dom G dom G = suc dom G
73 72 ord φ ¬ dom G = dom G dom G = suc dom G
74 70 73 mpd φ dom G = suc dom G