Step |
Hyp |
Ref |
Expression |
1 |
|
cnfcom.s |
|
2 |
|
cnfcom.a |
|
3 |
|
cnfcom.b |
|
4 |
|
cnfcom.f |
|
5 |
|
cnfcom.g |
|
6 |
|
cnfcom.h |
|
7 |
|
cnfcom.t |
|
8 |
|
cnfcom.m |
|
9 |
|
cnfcom.k |
|
10 |
|
cnfcom.w |
|
11 |
|
cnfcom2.1 |
|
12 |
|
n0i |
|
13 |
11 12
|
syl |
|
14 |
|
omelon |
|
15 |
14
|
a1i |
|
16 |
1 15 2
|
cantnff1o |
|
17 |
|
f1ocnv |
|
18 |
|
f1of |
|
19 |
16 17 18
|
3syl |
|
20 |
19 3
|
ffvelrnd |
|
21 |
4 20
|
eqeltrid |
|
22 |
1 15 2
|
cantnfs |
|
23 |
21 22
|
mpbid |
|
24 |
23
|
simpld |
|
25 |
24
|
adantr |
|
26 |
25
|
feqmptd |
|
27 |
|
dif0 |
|
28 |
27
|
eleq2i |
|
29 |
|
simpr |
|
30 |
|
ovexd |
|
31 |
1 15 2 5 21
|
cantnfcl |
|
32 |
31
|
simpld |
|
33 |
5
|
oien |
|
34 |
30 32 33
|
syl2anc |
|
35 |
34
|
adantr |
|
36 |
29 35
|
eqbrtrrd |
|
37 |
36
|
ensymd |
|
38 |
|
en0 |
|
39 |
37 38
|
sylib |
|
40 |
|
ss0b |
|
41 |
39 40
|
sylibr |
|
42 |
2
|
adantr |
|
43 |
|
0ex |
|
44 |
43
|
a1i |
|
45 |
25 41 42 44
|
suppssr |
|
46 |
28 45
|
sylan2br |
|
47 |
46
|
mpteq2dva |
|
48 |
26 47
|
eqtrd |
|
49 |
|
fconstmpt |
|
50 |
48 49
|
eqtr4di |
|
51 |
50
|
fveq2d |
|
52 |
4
|
fveq2i |
|
53 |
|
f1ocnvfv2 |
|
54 |
16 3 53
|
syl2anc |
|
55 |
52 54
|
eqtrid |
|
56 |
55
|
adantr |
|
57 |
|
peano1 |
|
58 |
57
|
a1i |
|
59 |
1 15 2 58
|
cantnf0 |
|
60 |
59
|
adantr |
|
61 |
51 56 60
|
3eqtr3d |
|
62 |
13 61
|
mtand |
|
63 |
|
nnlim |
|
64 |
31 63
|
simpl2im |
|
65 |
|
ioran |
|
66 |
62 64 65
|
sylanbrc |
|
67 |
5
|
oicl |
|
68 |
|
unizlim |
|
69 |
67 68
|
ax-mp |
|
70 |
66 69
|
sylnibr |
|
71 |
|
orduniorsuc |
|
72 |
67 71
|
mp1i |
|
73 |
72
|
ord |
|
74 |
70 73
|
mpd |
|