Step |
Hyp |
Ref |
Expression |
1 |
|
cnfcom.s |
|
2 |
|
cnfcom.a |
|
3 |
|
cnfcom.b |
|
4 |
|
cnfcom.f |
|
5 |
|
cnfcom.g |
|
6 |
|
cnfcom.h |
|
7 |
|
cnfcom.t |
|
8 |
|
cnfcom.m |
|
9 |
|
cnfcom.k |
|
10 |
|
cnfcom.w |
|
11 |
|
cnfcom3.1 |
|
12 |
|
cnfcom.x |
|
13 |
|
cnfcom.y |
|
14 |
|
cnfcom.n |
|
15 |
|
omelon |
|
16 |
|
suppssdm |
|
17 |
15
|
a1i |
|
18 |
1 17 2
|
cantnff1o |
|
19 |
|
f1ocnv |
|
20 |
|
f1of |
|
21 |
18 19 20
|
3syl |
|
22 |
21 3
|
ffvelrnd |
|
23 |
4 22
|
eqeltrid |
|
24 |
1 17 2
|
cantnfs |
|
25 |
23 24
|
mpbid |
|
26 |
25
|
simpld |
|
27 |
16 26
|
fssdm |
|
28 |
|
ovex |
|
29 |
5
|
oion |
|
30 |
28 29
|
ax-mp |
|
31 |
30
|
elexi |
|
32 |
31
|
uniex |
|
33 |
32
|
sucid |
|
34 |
|
peano1 |
|
35 |
34
|
a1i |
|
36 |
11 35
|
sseldd |
|
37 |
1 2 3 4 5 6 7 8 9 10 36
|
cnfcom2lem |
|
38 |
33 37
|
eleqtrrid |
|
39 |
5
|
oif |
|
40 |
39
|
ffvelrni |
|
41 |
38 40
|
syl |
|
42 |
10 41
|
eqeltrid |
|
43 |
27 42
|
sseldd |
|
44 |
|
onelon |
|
45 |
2 43 44
|
syl2anc |
|
46 |
|
oecl |
|
47 |
15 45 46
|
sylancr |
|
48 |
26 43
|
ffvelrnd |
|
49 |
|
nnon |
|
50 |
48 49
|
syl |
|
51 |
13 12
|
omf1o |
|
52 |
47 50 51
|
syl2anc |
|
53 |
26
|
ffnd |
|
54 |
|
0ex |
|
55 |
54
|
a1i |
|
56 |
|
elsuppfn |
|
57 |
53 2 55 56
|
syl3anc |
|
58 |
|
simpr |
|
59 |
57 58
|
syl6bi |
|
60 |
42 59
|
mpd |
|
61 |
|
on0eln0 |
|
62 |
48 49 61
|
3syl |
|
63 |
60 62
|
mpbird |
|
64 |
1 2 3 4 5 6 7 8 9 10 11
|
cnfcom3lem |
|
65 |
|
ondif1 |
|
66 |
65
|
simprbi |
|
67 |
64 66
|
syl |
|
68 |
|
omabs |
|
69 |
48 63 45 67 68
|
syl22anc |
|
70 |
69
|
f1oeq3d |
|
71 |
52 70
|
mpbid |
|
72 |
1 2 3 4 5 6 7 8 9 10 36
|
cnfcom2 |
|
73 |
|
f1oco |
|
74 |
71 72 73
|
syl2anc |
|
75 |
|
f1oeq1 |
|
76 |
14 75
|
ax-mp |
|
77 |
74 76
|
sylibr |
|