Metamath Proof Explorer


Theorem cnfcom3clem

Description: Lemma for cnfcom3c . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 4-Jul-2019)

Ref Expression
Hypotheses cnfcom3c.s S = dom ω CNF A
cnfcom3c.f F = ω CNF A -1 b
cnfcom3c.g G = OrdIso E F supp
cnfcom3c.h H = seq ω k V , z V M + 𝑜 z
cnfcom3c.t T = seq ω k V , f V K
cnfcom3c.m M = ω 𝑜 G k 𝑜 F G k
cnfcom3c.k K = x M dom f + 𝑜 x x dom f M + 𝑜 x -1
cnfcom3c.w W = G dom G
cnfcom3c.x X = u F W , v ω 𝑜 W F W 𝑜 v + 𝑜 u
cnfcom3c.y Y = u F W , v ω 𝑜 W ω 𝑜 W 𝑜 u + 𝑜 v
cnfcom3c.n N = X Y -1 T dom G
cnfcom3c.l L = b ω 𝑜 A N
Assertion cnfcom3clem A On g b A ω b w On 1 𝑜 g b : b 1-1 onto ω 𝑜 w

Proof

Step Hyp Ref Expression
1 cnfcom3c.s S = dom ω CNF A
2 cnfcom3c.f F = ω CNF A -1 b
3 cnfcom3c.g G = OrdIso E F supp
4 cnfcom3c.h H = seq ω k V , z V M + 𝑜 z
5 cnfcom3c.t T = seq ω k V , f V K
6 cnfcom3c.m M = ω 𝑜 G k 𝑜 F G k
7 cnfcom3c.k K = x M dom f + 𝑜 x x dom f M + 𝑜 x -1
8 cnfcom3c.w W = G dom G
9 cnfcom3c.x X = u F W , v ω 𝑜 W F W 𝑜 v + 𝑜 u
10 cnfcom3c.y Y = u F W , v ω 𝑜 W ω 𝑜 W 𝑜 u + 𝑜 v
11 cnfcom3c.n N = X Y -1 T dom G
12 cnfcom3c.l L = b ω 𝑜 A N
13 simp1 A On b A ω b A On
14 omelon ω On
15 1onn 1 𝑜 ω
16 ondif2 ω On 2 𝑜 ω On 1 𝑜 ω
17 14 15 16 mpbir2an ω On 2 𝑜
18 oeworde ω On 2 𝑜 A On A ω 𝑜 A
19 17 13 18 sylancr A On b A ω b A ω 𝑜 A
20 simp2 A On b A ω b b A
21 19 20 sseldd A On b A ω b b ω 𝑜 A
22 simp3 A On b A ω b ω b
23 1 13 21 2 3 4 5 6 7 8 22 cnfcom3lem A On b A ω b W On 1 𝑜
24 1 13 21 2 3 4 5 6 7 8 22 9 10 11 cnfcom3 A On b A ω b N : b 1-1 onto ω 𝑜 W
25 f1of N : b 1-1 onto ω 𝑜 W N : b ω 𝑜 W
26 24 25 syl A On b A ω b N : b ω 𝑜 W
27 26 20 fexd A On b A ω b N V
28 12 fvmpt2 b ω 𝑜 A N V L b = N
29 21 27 28 syl2anc A On b A ω b L b = N
30 29 f1oeq1d A On b A ω b L b : b 1-1 onto ω 𝑜 W N : b 1-1 onto ω 𝑜 W
31 24 30 mpbird A On b A ω b L b : b 1-1 onto ω 𝑜 W
32 oveq2 w = W ω 𝑜 w = ω 𝑜 W
33 32 f1oeq3d w = W L b : b 1-1 onto ω 𝑜 w L b : b 1-1 onto ω 𝑜 W
34 33 rspcev W On 1 𝑜 L b : b 1-1 onto ω 𝑜 W w On 1 𝑜 L b : b 1-1 onto ω 𝑜 w
35 23 31 34 syl2anc A On b A ω b w On 1 𝑜 L b : b 1-1 onto ω 𝑜 w
36 35 3expia A On b A ω b w On 1 𝑜 L b : b 1-1 onto ω 𝑜 w
37 36 ralrimiva A On b A ω b w On 1 𝑜 L b : b 1-1 onto ω 𝑜 w
38 ovex ω 𝑜 A V
39 38 mptex b ω 𝑜 A N V
40 12 39 eqeltri L V
41 nfmpt1 _ b b ω 𝑜 A N
42 12 41 nfcxfr _ b L
43 42 nfeq2 b g = L
44 fveq1 g = L g b = L b
45 44 f1oeq1d g = L g b : b 1-1 onto ω 𝑜 w L b : b 1-1 onto ω 𝑜 w
46 45 rexbidv g = L w On 1 𝑜 g b : b 1-1 onto ω 𝑜 w w On 1 𝑜 L b : b 1-1 onto ω 𝑜 w
47 46 imbi2d g = L ω b w On 1 𝑜 g b : b 1-1 onto ω 𝑜 w ω b w On 1 𝑜 L b : b 1-1 onto ω 𝑜 w
48 43 47 ralbid g = L b A ω b w On 1 𝑜 g b : b 1-1 onto ω 𝑜 w b A ω b w On 1 𝑜 L b : b 1-1 onto ω 𝑜 w
49 40 48 spcev b A ω b w On 1 𝑜 L b : b 1-1 onto ω 𝑜 w g b A ω b w On 1 𝑜 g b : b 1-1 onto ω 𝑜 w
50 37 49 syl A On g b A ω b w On 1 𝑜 g b : b 1-1 onto ω 𝑜 w