Step |
Hyp |
Ref |
Expression |
1 |
|
cnfcom.s |
|
2 |
|
cnfcom.a |
|
3 |
|
cnfcom.b |
|
4 |
|
cnfcom.f |
|
5 |
|
cnfcom.g |
|
6 |
|
cnfcom.h |
|
7 |
|
cnfcom.t |
|
8 |
|
cnfcom.m |
|
9 |
|
cnfcom.k |
|
10 |
|
cnfcom.w |
|
11 |
|
cnfcom3.1 |
|
12 |
|
suppssdm |
|
13 |
|
omelon |
|
14 |
13
|
a1i |
|
15 |
1 14 2
|
cantnff1o |
|
16 |
|
f1ocnv |
|
17 |
|
f1of |
|
18 |
15 16 17
|
3syl |
|
19 |
18 3
|
ffvelrnd |
|
20 |
4 19
|
eqeltrid |
|
21 |
1 14 2
|
cantnfs |
|
22 |
20 21
|
mpbid |
|
23 |
22
|
simpld |
|
24 |
12 23
|
fssdm |
|
25 |
|
ovex |
|
26 |
5
|
oion |
|
27 |
25 26
|
ax-mp |
|
28 |
27
|
elexi |
|
29 |
28
|
uniex |
|
30 |
29
|
sucid |
|
31 |
|
peano1 |
|
32 |
31
|
a1i |
|
33 |
11 32
|
sseldd |
|
34 |
1 2 3 4 5 6 7 8 9 10 33
|
cnfcom2lem |
|
35 |
30 34
|
eleqtrrid |
|
36 |
5
|
oif |
|
37 |
36
|
ffvelrni |
|
38 |
35 37
|
syl |
|
39 |
24 38
|
sseldd |
|
40 |
|
onelon |
|
41 |
2 39 40
|
syl2anc |
|
42 |
10 41
|
eqeltrid |
|
43 |
|
oecl |
|
44 |
13 2 43
|
sylancr |
|
45 |
|
onelon |
|
46 |
44 3 45
|
syl2anc |
|
47 |
|
ontri1 |
|
48 |
13 46 47
|
sylancr |
|
49 |
11 48
|
mpbid |
|
50 |
4
|
fveq2i |
|
51 |
|
f1ocnvfv2 |
|
52 |
15 3 51
|
syl2anc |
|
53 |
50 52
|
eqtrid |
|
54 |
53
|
adantr |
|
55 |
13
|
a1i |
|
56 |
2
|
adantr |
|
57 |
20
|
adantr |
|
58 |
31
|
a1i |
|
59 |
|
1on |
|
60 |
59
|
a1i |
|
61 |
|
ovexd |
|
62 |
1 14 2 5 20
|
cantnfcl |
|
63 |
62
|
simpld |
|
64 |
5
|
oiiso |
|
65 |
61 63 64
|
syl2anc |
|
66 |
65
|
ad2antrr |
|
67 |
|
isof1o |
|
68 |
66 67
|
syl |
|
69 |
|
f1ocnv |
|
70 |
|
f1of |
|
71 |
68 69 70
|
3syl |
|
72 |
|
ffvelrn |
|
73 |
71 72
|
sylancom |
|
74 |
|
elssuni |
|
75 |
73 74
|
syl |
|
76 |
|
onelon |
|
77 |
27 73 76
|
sylancr |
|
78 |
|
onuni |
|
79 |
27 78
|
ax-mp |
|
80 |
|
ontri1 |
|
81 |
77 79 80
|
sylancl |
|
82 |
75 81
|
mpbid |
|
83 |
35
|
ad2antrr |
|
84 |
|
isorel |
|
85 |
66 83 73 84
|
syl12anc |
|
86 |
|
fvex |
|
87 |
86
|
epeli |
|
88 |
10
|
breq1i |
|
89 |
|
fvex |
|
90 |
89
|
epeli |
|
91 |
88 90
|
bitr3i |
|
92 |
85 87 91
|
3bitr3g |
|
93 |
|
simplr |
|
94 |
|
f1ocnvfv2 |
|
95 |
68 94
|
sylancom |
|
96 |
93 95
|
eleq12d |
|
97 |
92 96
|
bitrd |
|
98 |
82 97
|
mtbid |
|
99 |
|
onss |
|
100 |
2 99
|
syl |
|
101 |
24 100
|
sstrd |
|
102 |
101
|
adantr |
|
103 |
102
|
sselda |
|
104 |
|
on0eqel |
|
105 |
103 104
|
syl |
|
106 |
105
|
ord |
|
107 |
98 106
|
mt3d |
|
108 |
|
el1o |
|
109 |
107 108
|
sylibr |
|
110 |
109
|
ex |
|
111 |
110
|
ssrdv |
|
112 |
1 55 56 57 58 60 111
|
cantnflt2 |
|
113 |
|
oe1 |
|
114 |
13 113
|
ax-mp |
|
115 |
112 114
|
eleqtrdi |
|
116 |
54 115
|
eqeltrrd |
|
117 |
116
|
ex |
|
118 |
117
|
necon3bd |
|
119 |
49 118
|
mpd |
|
120 |
|
dif1o |
|
121 |
42 119 120
|
sylanbrc |
|