Metamath Proof Explorer


Theorem cnfcom3lem

Description: Lemma for cnfcom3 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 4-Jul-2019)

Ref Expression
Hypotheses cnfcom.s S = dom ω CNF A
cnfcom.a φ A On
cnfcom.b φ B ω 𝑜 A
cnfcom.f F = ω CNF A -1 B
cnfcom.g G = OrdIso E F supp
cnfcom.h H = seq ω k V , z V M + 𝑜 z
cnfcom.t T = seq ω k V , f V K
cnfcom.m M = ω 𝑜 G k 𝑜 F G k
cnfcom.k K = x M dom f + 𝑜 x x dom f M + 𝑜 x -1
cnfcom.w W = G dom G
cnfcom3.1 φ ω B
Assertion cnfcom3lem φ W On 1 𝑜

Proof

Step Hyp Ref Expression
1 cnfcom.s S = dom ω CNF A
2 cnfcom.a φ A On
3 cnfcom.b φ B ω 𝑜 A
4 cnfcom.f F = ω CNF A -1 B
5 cnfcom.g G = OrdIso E F supp
6 cnfcom.h H = seq ω k V , z V M + 𝑜 z
7 cnfcom.t T = seq ω k V , f V K
8 cnfcom.m M = ω 𝑜 G k 𝑜 F G k
9 cnfcom.k K = x M dom f + 𝑜 x x dom f M + 𝑜 x -1
10 cnfcom.w W = G dom G
11 cnfcom3.1 φ ω B
12 suppssdm F supp dom F
13 omelon ω On
14 13 a1i φ ω On
15 1 14 2 cantnff1o φ ω CNF A : S 1-1 onto ω 𝑜 A
16 f1ocnv ω CNF A : S 1-1 onto ω 𝑜 A ω CNF A -1 : ω 𝑜 A 1-1 onto S
17 f1of ω CNF A -1 : ω 𝑜 A 1-1 onto S ω CNF A -1 : ω 𝑜 A S
18 15 16 17 3syl φ ω CNF A -1 : ω 𝑜 A S
19 18 3 ffvelrnd φ ω CNF A -1 B S
20 4 19 eqeltrid φ F S
21 1 14 2 cantnfs φ F S F : A ω finSupp F
22 20 21 mpbid φ F : A ω finSupp F
23 22 simpld φ F : A ω
24 12 23 fssdm φ F supp A
25 ovex F supp V
26 5 oion F supp V dom G On
27 25 26 ax-mp dom G On
28 27 elexi dom G V
29 28 uniex dom G V
30 29 sucid dom G suc dom G
31 peano1 ω
32 31 a1i φ ω
33 11 32 sseldd φ B
34 1 2 3 4 5 6 7 8 9 10 33 cnfcom2lem φ dom G = suc dom G
35 30 34 eleqtrrid φ dom G dom G
36 5 oif G : dom G F supp
37 36 ffvelrni dom G dom G G dom G supp F
38 35 37 syl φ G dom G supp F
39 24 38 sseldd φ G dom G A
40 onelon A On G dom G A G dom G On
41 2 39 40 syl2anc φ G dom G On
42 10 41 eqeltrid φ W On
43 oecl ω On A On ω 𝑜 A On
44 13 2 43 sylancr φ ω 𝑜 A On
45 onelon ω 𝑜 A On B ω 𝑜 A B On
46 44 3 45 syl2anc φ B On
47 ontri1 ω On B On ω B ¬ B ω
48 13 46 47 sylancr φ ω B ¬ B ω
49 11 48 mpbid φ ¬ B ω
50 4 fveq2i ω CNF A F = ω CNF A ω CNF A -1 B
51 f1ocnvfv2 ω CNF A : S 1-1 onto ω 𝑜 A B ω 𝑜 A ω CNF A ω CNF A -1 B = B
52 15 3 51 syl2anc φ ω CNF A ω CNF A -1 B = B
53 50 52 eqtrid φ ω CNF A F = B
54 53 adantr φ W = ω CNF A F = B
55 13 a1i φ W = ω On
56 2 adantr φ W = A On
57 20 adantr φ W = F S
58 31 a1i φ W = ω
59 1on 1 𝑜 On
60 59 a1i φ W = 1 𝑜 On
61 ovexd φ F supp V
62 1 14 2 5 20 cantnfcl φ E We supp F dom G ω
63 62 simpld φ E We supp F
64 5 oiiso F supp V E We supp F G Isom E , E dom G F supp
65 61 63 64 syl2anc φ G Isom E , E dom G F supp
66 65 ad2antrr φ W = x supp F G Isom E , E dom G F supp
67 isof1o G Isom E , E dom G F supp G : dom G 1-1 onto F supp
68 66 67 syl φ W = x supp F G : dom G 1-1 onto F supp
69 f1ocnv G : dom G 1-1 onto F supp G -1 : F supp 1-1 onto dom G
70 f1of G -1 : F supp 1-1 onto dom G G -1 : F supp dom G
71 68 69 70 3syl φ W = x supp F G -1 : F supp dom G
72 ffvelrn G -1 : F supp dom G x supp F G -1 x dom G
73 71 72 sylancom φ W = x supp F G -1 x dom G
74 elssuni G -1 x dom G G -1 x dom G
75 73 74 syl φ W = x supp F G -1 x dom G
76 onelon dom G On G -1 x dom G G -1 x On
77 27 73 76 sylancr φ W = x supp F G -1 x On
78 onuni dom G On dom G On
79 27 78 ax-mp dom G On
80 ontri1 G -1 x On dom G On G -1 x dom G ¬ dom G G -1 x
81 77 79 80 sylancl φ W = x supp F G -1 x dom G ¬ dom G G -1 x
82 75 81 mpbid φ W = x supp F ¬ dom G G -1 x
83 35 ad2antrr φ W = x supp F dom G dom G
84 isorel G Isom E , E dom G F supp dom G dom G G -1 x dom G dom G E G -1 x G dom G E G G -1 x
85 66 83 73 84 syl12anc φ W = x supp F dom G E G -1 x G dom G E G G -1 x
86 fvex G -1 x V
87 86 epeli dom G E G -1 x dom G G -1 x
88 10 breq1i W E G G -1 x G dom G E G G -1 x
89 fvex G G -1 x V
90 89 epeli W E G G -1 x W G G -1 x
91 88 90 bitr3i G dom G E G G -1 x W G G -1 x
92 85 87 91 3bitr3g φ W = x supp F dom G G -1 x W G G -1 x
93 simplr φ W = x supp F W =
94 f1ocnvfv2 G : dom G 1-1 onto F supp x supp F G G -1 x = x
95 68 94 sylancom φ W = x supp F G G -1 x = x
96 93 95 eleq12d φ W = x supp F W G G -1 x x
97 92 96 bitrd φ W = x supp F dom G G -1 x x
98 82 97 mtbid φ W = x supp F ¬ x
99 onss A On A On
100 2 99 syl φ A On
101 24 100 sstrd φ F supp On
102 101 adantr φ W = F supp On
103 102 sselda φ W = x supp F x On
104 on0eqel x On x = x
105 103 104 syl φ W = x supp F x = x
106 105 ord φ W = x supp F ¬ x = x
107 98 106 mt3d φ W = x supp F x =
108 el1o x 1 𝑜 x =
109 107 108 sylibr φ W = x supp F x 1 𝑜
110 109 ex φ W = x supp F x 1 𝑜
111 110 ssrdv φ W = F supp 1 𝑜
112 1 55 56 57 58 60 111 cantnflt2 φ W = ω CNF A F ω 𝑜 1 𝑜
113 oe1 ω On ω 𝑜 1 𝑜 = ω
114 13 113 ax-mp ω 𝑜 1 𝑜 = ω
115 112 114 eleqtrdi φ W = ω CNF A F ω
116 54 115 eqeltrrd φ W = B ω
117 116 ex φ W = B ω
118 117 necon3bd φ ¬ B ω W
119 49 118 mpd φ W
120 dif1o W On 1 𝑜 W On W
121 42 119 120 sylanbrc φ W On 1 𝑜