Step |
Hyp |
Ref |
Expression |
1 |
|
cnfcom.s |
|
2 |
|
cnfcom.a |
|
3 |
|
cnfcom.b |
|
4 |
|
cnfcom.f |
|
5 |
|
cnfcom.g |
|
6 |
|
cnfcom.h |
|
7 |
|
cnfcom.t |
|
8 |
|
cnfcom.m |
|
9 |
|
cnfcom.k |
|
10 |
|
cnfcom.1 |
|
11 |
|
cnfcom.2 |
|
12 |
|
cnfcom.3 |
|
13 |
|
omelon |
|
14 |
|
suppssdm |
|
15 |
13
|
a1i |
|
16 |
1 15 2
|
cantnff1o |
|
17 |
|
f1ocnv |
|
18 |
|
f1of |
|
19 |
16 17 18
|
3syl |
|
20 |
19 3
|
ffvelrnd |
|
21 |
4 20
|
eqeltrid |
|
22 |
1 15 2
|
cantnfs |
|
23 |
21 22
|
mpbid |
|
24 |
23
|
simpld |
|
25 |
14 24
|
fssdm |
|
26 |
5
|
oif |
|
27 |
26
|
ffvelrni |
|
28 |
10 27
|
syl |
|
29 |
25 28
|
sseldd |
|
30 |
|
onelon |
|
31 |
2 29 30
|
syl2anc |
|
32 |
|
oecl |
|
33 |
13 31 32
|
sylancr |
|
34 |
24 29
|
ffvelrnd |
|
35 |
|
nnon |
|
36 |
34 35
|
syl |
|
37 |
|
omcl |
|
38 |
33 36 37
|
syl2anc |
|
39 |
1 15 2 5 21
|
cantnfcl |
|
40 |
39
|
simprd |
|
41 |
|
elnn |
|
42 |
10 40 41
|
syl2anc |
|
43 |
6
|
cantnfvalf |
|
44 |
43
|
ffvelrni |
|
45 |
42 44
|
syl |
|
46 |
|
eqid |
|
47 |
46
|
oacomf1o |
|
48 |
38 45 47
|
syl2anc |
|
49 |
7
|
seqomsuc |
|
50 |
42 49
|
syl |
|
51 |
|
nfcv |
|
52 |
|
nfcv |
|
53 |
|
nfcv |
|
54 |
|
nfcv |
|
55 |
|
oveq2 |
|
56 |
55
|
cbvmptv |
|
57 |
|
simpl |
|
58 |
57
|
fveq2d |
|
59 |
58
|
oveq2d |
|
60 |
58
|
fveq2d |
|
61 |
59 60
|
oveq12d |
|
62 |
8 61
|
eqtrid |
|
63 |
|
simpr |
|
64 |
63
|
dmeqd |
|
65 |
64
|
oveq1d |
|
66 |
62 65
|
mpteq12dv |
|
67 |
56 66
|
eqtrid |
|
68 |
|
oveq2 |
|
69 |
68
|
cbvmptv |
|
70 |
62
|
oveq1d |
|
71 |
64 70
|
mpteq12dv |
|
72 |
69 71
|
eqtrid |
|
73 |
72
|
cnveqd |
|
74 |
67 73
|
uneq12d |
|
75 |
9 74
|
eqtrid |
|
76 |
51 52 53 54 75
|
cbvmpo |
|
77 |
76
|
a1i |
|
78 |
|
simprl |
|
79 |
78
|
fveq2d |
|
80 |
79
|
oveq2d |
|
81 |
79
|
fveq2d |
|
82 |
80 81
|
oveq12d |
|
83 |
|
simpr |
|
84 |
83
|
dmeqd |
|
85 |
|
f1odm |
|
86 |
12 85
|
syl |
|
87 |
84 86
|
sylan9eqr |
|
88 |
87
|
oveq1d |
|
89 |
82 88
|
mpteq12dv |
|
90 |
82
|
oveq1d |
|
91 |
87 90
|
mpteq12dv |
|
92 |
91
|
cnveqd |
|
93 |
89 92
|
uneq12d |
|
94 |
10
|
elexd |
|
95 |
|
fvexd |
|
96 |
|
ovex |
|
97 |
96
|
mptex |
|
98 |
|
fvex |
|
99 |
98
|
mptex |
|
100 |
99
|
cnvex |
|
101 |
97 100
|
unex |
|
102 |
101
|
a1i |
|
103 |
77 93 94 95 102
|
ovmpod |
|
104 |
50 103
|
eqtrd |
|
105 |
104
|
f1oeq1d |
|
106 |
48 105
|
mpbird |
|
107 |
13
|
a1i |
|
108 |
|
simpl |
|
109 |
|
simpr |
|
110 |
8
|
oveq1i |
|
111 |
110
|
a1i |
|
112 |
111
|
mpoeq3ia |
|
113 |
|
eqid |
|
114 |
|
seqomeq12 |
|
115 |
112 113 114
|
mp2an |
|
116 |
6 115
|
eqtri |
|
117 |
1 107 108 5 109 116
|
cantnfsuc |
|
118 |
2 21 42 117
|
syl21anc |
|
119 |
118
|
f1oeq2d |
|
120 |
106 119
|
mpbird |
|
121 |
|
sssucid |
|
122 |
121 10
|
sselid |
|
123 |
|
epelg |
|
124 |
10 123
|
syl |
|
125 |
124
|
biimpar |
|
126 |
|
ovexd |
|
127 |
39
|
simpld |
|
128 |
5
|
oiiso |
|
129 |
126 127 128
|
syl2anc |
|
130 |
129
|
adantr |
|
131 |
5
|
oicl |
|
132 |
|
ordelss |
|
133 |
131 10 132
|
sylancr |
|
134 |
133
|
sselda |
|
135 |
10
|
adantr |
|
136 |
|
isorel |
|
137 |
130 134 135 136
|
syl12anc |
|
138 |
125 137
|
mpbid |
|
139 |
|
fvex |
|
140 |
139
|
epeli |
|
141 |
138 140
|
sylib |
|
142 |
141
|
ralrimiva |
|
143 |
|
ffun |
|
144 |
26 143
|
ax-mp |
|
145 |
|
funimass4 |
|
146 |
144 133 145
|
sylancr |
|
147 |
142 146
|
mpbird |
|
148 |
13
|
a1i |
|
149 |
|
simpll |
|
150 |
|
simplr |
|
151 |
|
peano1 |
|
152 |
151
|
a1i |
|
153 |
|
simpr1 |
|
154 |
|
simpr2 |
|
155 |
|
simpr3 |
|
156 |
1 148 149 5 150 116 152 153 154 155
|
cantnflt |
|
157 |
2 21 122 31 147 156
|
syl23anc |
|
158 |
24
|
ffnd |
|
159 |
|
0ex |
|
160 |
159
|
a1i |
|
161 |
|
elsuppfn |
|
162 |
158 2 160 161
|
syl3anc |
|
163 |
|
simpr |
|
164 |
162 163
|
syl6bi |
|
165 |
28 164
|
mpd |
|
166 |
|
on0eln0 |
|
167 |
36 166
|
syl |
|
168 |
165 167
|
mpbird |
|
169 |
|
omword1 |
|
170 |
33 36 168 169
|
syl21anc |
|
171 |
|
oaabs2 |
|
172 |
157 38 170 171
|
syl21anc |
|
173 |
172
|
f1oeq3d |
|
174 |
120 173
|
mpbid |
|