Metamath Proof Explorer


Theorem cnfcomlem

Description: Lemma for cnfcom . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)

Ref Expression
Hypotheses cnfcom.s S = dom ω CNF A
cnfcom.a φ A On
cnfcom.b φ B ω 𝑜 A
cnfcom.f F = ω CNF A -1 B
cnfcom.g G = OrdIso E F supp
cnfcom.h H = seq ω k V , z V M + 𝑜 z
cnfcom.t T = seq ω k V , f V K
cnfcom.m M = ω 𝑜 G k 𝑜 F G k
cnfcom.k K = x M dom f + 𝑜 x x dom f M + 𝑜 x -1
cnfcom.1 φ I dom G
cnfcom.2 φ O ω 𝑜 G I
cnfcom.3 φ T I : H I 1-1 onto O
Assertion cnfcomlem φ T suc I : H suc I 1-1 onto ω 𝑜 G I 𝑜 F G I

Proof

Step Hyp Ref Expression
1 cnfcom.s S = dom ω CNF A
2 cnfcom.a φ A On
3 cnfcom.b φ B ω 𝑜 A
4 cnfcom.f F = ω CNF A -1 B
5 cnfcom.g G = OrdIso E F supp
6 cnfcom.h H = seq ω k V , z V M + 𝑜 z
7 cnfcom.t T = seq ω k V , f V K
8 cnfcom.m M = ω 𝑜 G k 𝑜 F G k
9 cnfcom.k K = x M dom f + 𝑜 x x dom f M + 𝑜 x -1
10 cnfcom.1 φ I dom G
11 cnfcom.2 φ O ω 𝑜 G I
12 cnfcom.3 φ T I : H I 1-1 onto O
13 omelon ω On
14 suppssdm F supp dom F
15 13 a1i φ ω On
16 1 15 2 cantnff1o φ ω CNF A : S 1-1 onto ω 𝑜 A
17 f1ocnv ω CNF A : S 1-1 onto ω 𝑜 A ω CNF A -1 : ω 𝑜 A 1-1 onto S
18 f1of ω CNF A -1 : ω 𝑜 A 1-1 onto S ω CNF A -1 : ω 𝑜 A S
19 16 17 18 3syl φ ω CNF A -1 : ω 𝑜 A S
20 19 3 ffvelrnd φ ω CNF A -1 B S
21 4 20 eqeltrid φ F S
22 1 15 2 cantnfs φ F S F : A ω finSupp F
23 21 22 mpbid φ F : A ω finSupp F
24 23 simpld φ F : A ω
25 14 24 fssdm φ F supp A
26 5 oif G : dom G F supp
27 26 ffvelrni I dom G G I supp F
28 10 27 syl φ G I supp F
29 25 28 sseldd φ G I A
30 onelon A On G I A G I On
31 2 29 30 syl2anc φ G I On
32 oecl ω On G I On ω 𝑜 G I On
33 13 31 32 sylancr φ ω 𝑜 G I On
34 24 29 ffvelrnd φ F G I ω
35 nnon F G I ω F G I On
36 34 35 syl φ F G I On
37 omcl ω 𝑜 G I On F G I On ω 𝑜 G I 𝑜 F G I On
38 33 36 37 syl2anc φ ω 𝑜 G I 𝑜 F G I On
39 1 15 2 5 21 cantnfcl φ E We supp F dom G ω
40 39 simprd φ dom G ω
41 elnn I dom G dom G ω I ω
42 10 40 41 syl2anc φ I ω
43 6 cantnfvalf H : ω On
44 43 ffvelrni I ω H I On
45 42 44 syl φ H I On
46 eqid y ω 𝑜 G I 𝑜 F G I H I + 𝑜 y y H I ω 𝑜 G I 𝑜 F G I + 𝑜 y -1 = y ω 𝑜 G I 𝑜 F G I H I + 𝑜 y y H I ω 𝑜 G I 𝑜 F G I + 𝑜 y -1
47 46 oacomf1o ω 𝑜 G I 𝑜 F G I On H I On y ω 𝑜 G I 𝑜 F G I H I + 𝑜 y y H I ω 𝑜 G I 𝑜 F G I + 𝑜 y -1 : ω 𝑜 G I 𝑜 F G I + 𝑜 H I 1-1 onto H I + 𝑜 ω 𝑜 G I 𝑜 F G I
48 38 45 47 syl2anc φ y ω 𝑜 G I 𝑜 F G I H I + 𝑜 y y H I ω 𝑜 G I 𝑜 F G I + 𝑜 y -1 : ω 𝑜 G I 𝑜 F G I + 𝑜 H I 1-1 onto H I + 𝑜 ω 𝑜 G I 𝑜 F G I
49 7 seqomsuc I ω T suc I = I k V , f V K T I
50 42 49 syl φ T suc I = I k V , f V K T I
51 nfcv _ u K
52 nfcv _ v K
53 nfcv _ k y ω 𝑜 G u 𝑜 F G u dom v + 𝑜 y y dom v ω 𝑜 G u 𝑜 F G u + 𝑜 y -1
54 nfcv _ f y ω 𝑜 G u 𝑜 F G u dom v + 𝑜 y y dom v ω 𝑜 G u 𝑜 F G u + 𝑜 y -1
55 oveq2 x = y dom f + 𝑜 x = dom f + 𝑜 y
56 55 cbvmptv x M dom f + 𝑜 x = y M dom f + 𝑜 y
57 simpl k = u f = v k = u
58 57 fveq2d k = u f = v G k = G u
59 58 oveq2d k = u f = v ω 𝑜 G k = ω 𝑜 G u
60 58 fveq2d k = u f = v F G k = F G u
61 59 60 oveq12d k = u f = v ω 𝑜 G k 𝑜 F G k = ω 𝑜 G u 𝑜 F G u
62 8 61 eqtrid k = u f = v M = ω 𝑜 G u 𝑜 F G u
63 simpr k = u f = v f = v
64 63 dmeqd k = u f = v dom f = dom v
65 64 oveq1d k = u f = v dom f + 𝑜 y = dom v + 𝑜 y
66 62 65 mpteq12dv k = u f = v y M dom f + 𝑜 y = y ω 𝑜 G u 𝑜 F G u dom v + 𝑜 y
67 56 66 eqtrid k = u f = v x M dom f + 𝑜 x = y ω 𝑜 G u 𝑜 F G u dom v + 𝑜 y
68 oveq2 x = y M + 𝑜 x = M + 𝑜 y
69 68 cbvmptv x dom f M + 𝑜 x = y dom f M + 𝑜 y
70 62 oveq1d k = u f = v M + 𝑜 y = ω 𝑜 G u 𝑜 F G u + 𝑜 y
71 64 70 mpteq12dv k = u f = v y dom f M + 𝑜 y = y dom v ω 𝑜 G u 𝑜 F G u + 𝑜 y
72 69 71 eqtrid k = u f = v x dom f M + 𝑜 x = y dom v ω 𝑜 G u 𝑜 F G u + 𝑜 y
73 72 cnveqd k = u f = v x dom f M + 𝑜 x -1 = y dom v ω 𝑜 G u 𝑜 F G u + 𝑜 y -1
74 67 73 uneq12d k = u f = v x M dom f + 𝑜 x x dom f M + 𝑜 x -1 = y ω 𝑜 G u 𝑜 F G u dom v + 𝑜 y y dom v ω 𝑜 G u 𝑜 F G u + 𝑜 y -1
75 9 74 eqtrid k = u f = v K = y ω 𝑜 G u 𝑜 F G u dom v + 𝑜 y y dom v ω 𝑜 G u 𝑜 F G u + 𝑜 y -1
76 51 52 53 54 75 cbvmpo k V , f V K = u V , v V y ω 𝑜 G u 𝑜 F G u dom v + 𝑜 y y dom v ω 𝑜 G u 𝑜 F G u + 𝑜 y -1
77 76 a1i φ k V , f V K = u V , v V y ω 𝑜 G u 𝑜 F G u dom v + 𝑜 y y dom v ω 𝑜 G u 𝑜 F G u + 𝑜 y -1
78 simprl φ u = I v = T I u = I
79 78 fveq2d φ u = I v = T I G u = G I
80 79 oveq2d φ u = I v = T I ω 𝑜 G u = ω 𝑜 G I
81 79 fveq2d φ u = I v = T I F G u = F G I
82 80 81 oveq12d φ u = I v = T I ω 𝑜 G u 𝑜 F G u = ω 𝑜 G I 𝑜 F G I
83 simpr u = I v = T I v = T I
84 83 dmeqd u = I v = T I dom v = dom T I
85 f1odm T I : H I 1-1 onto O dom T I = H I
86 12 85 syl φ dom T I = H I
87 84 86 sylan9eqr φ u = I v = T I dom v = H I
88 87 oveq1d φ u = I v = T I dom v + 𝑜 y = H I + 𝑜 y
89 82 88 mpteq12dv φ u = I v = T I y ω 𝑜 G u 𝑜 F G u dom v + 𝑜 y = y ω 𝑜 G I 𝑜 F G I H I + 𝑜 y
90 82 oveq1d φ u = I v = T I ω 𝑜 G u 𝑜 F G u + 𝑜 y = ω 𝑜 G I 𝑜 F G I + 𝑜 y
91 87 90 mpteq12dv φ u = I v = T I y dom v ω 𝑜 G u 𝑜 F G u + 𝑜 y = y H I ω 𝑜 G I 𝑜 F G I + 𝑜 y
92 91 cnveqd φ u = I v = T I y dom v ω 𝑜 G u 𝑜 F G u + 𝑜 y -1 = y H I ω 𝑜 G I 𝑜 F G I + 𝑜 y -1
93 89 92 uneq12d φ u = I v = T I y ω 𝑜 G u 𝑜 F G u dom v + 𝑜 y y dom v ω 𝑜 G u 𝑜 F G u + 𝑜 y -1 = y ω 𝑜 G I 𝑜 F G I H I + 𝑜 y y H I ω 𝑜 G I 𝑜 F G I + 𝑜 y -1
94 10 elexd φ I V
95 fvexd φ T I V
96 ovex ω 𝑜 G I 𝑜 F G I V
97 96 mptex y ω 𝑜 G I 𝑜 F G I H I + 𝑜 y V
98 fvex H I V
99 98 mptex y H I ω 𝑜 G I 𝑜 F G I + 𝑜 y V
100 99 cnvex y H I ω 𝑜 G I 𝑜 F G I + 𝑜 y -1 V
101 97 100 unex y ω 𝑜 G I 𝑜 F G I H I + 𝑜 y y H I ω 𝑜 G I 𝑜 F G I + 𝑜 y -1 V
102 101 a1i φ y ω 𝑜 G I 𝑜 F G I H I + 𝑜 y y H I ω 𝑜 G I 𝑜 F G I + 𝑜 y -1 V
103 77 93 94 95 102 ovmpod φ I k V , f V K T I = y ω 𝑜 G I 𝑜 F G I H I + 𝑜 y y H I ω 𝑜 G I 𝑜 F G I + 𝑜 y -1
104 50 103 eqtrd φ T suc I = y ω 𝑜 G I 𝑜 F G I H I + 𝑜 y y H I ω 𝑜 G I 𝑜 F G I + 𝑜 y -1
105 104 f1oeq1d φ T suc I : ω 𝑜 G I 𝑜 F G I + 𝑜 H I 1-1 onto H I + 𝑜 ω 𝑜 G I 𝑜 F G I y ω 𝑜 G I 𝑜 F G I H I + 𝑜 y y H I ω 𝑜 G I 𝑜 F G I + 𝑜 y -1 : ω 𝑜 G I 𝑜 F G I + 𝑜 H I 1-1 onto H I + 𝑜 ω 𝑜 G I 𝑜 F G I
106 48 105 mpbird φ T suc I : ω 𝑜 G I 𝑜 F G I + 𝑜 H I 1-1 onto H I + 𝑜 ω 𝑜 G I 𝑜 F G I
107 13 a1i A On F S ω On
108 simpl A On F S A On
109 simpr A On F S F S
110 8 oveq1i M + 𝑜 z = ω 𝑜 G k 𝑜 F G k + 𝑜 z
111 110 a1i k V z V M + 𝑜 z = ω 𝑜 G k 𝑜 F G k + 𝑜 z
112 111 mpoeq3ia k V , z V M + 𝑜 z = k V , z V ω 𝑜 G k 𝑜 F G k + 𝑜 z
113 eqid =
114 seqomeq12 k V , z V M + 𝑜 z = k V , z V ω 𝑜 G k 𝑜 F G k + 𝑜 z = seq ω k V , z V M + 𝑜 z = seq ω k V , z V ω 𝑜 G k 𝑜 F G k + 𝑜 z
115 112 113 114 mp2an seq ω k V , z V M + 𝑜 z = seq ω k V , z V ω 𝑜 G k 𝑜 F G k + 𝑜 z
116 6 115 eqtri H = seq ω k V , z V ω 𝑜 G k 𝑜 F G k + 𝑜 z
117 1 107 108 5 109 116 cantnfsuc A On F S I ω H suc I = ω 𝑜 G I 𝑜 F G I + 𝑜 H I
118 2 21 42 117 syl21anc φ H suc I = ω 𝑜 G I 𝑜 F G I + 𝑜 H I
119 118 f1oeq2d φ T suc I : H suc I 1-1 onto H I + 𝑜 ω 𝑜 G I 𝑜 F G I T suc I : ω 𝑜 G I 𝑜 F G I + 𝑜 H I 1-1 onto H I + 𝑜 ω 𝑜 G I 𝑜 F G I
120 106 119 mpbird φ T suc I : H suc I 1-1 onto H I + 𝑜 ω 𝑜 G I 𝑜 F G I
121 sssucid dom G suc dom G
122 121 10 sselid φ I suc dom G
123 epelg I dom G y E I y I
124 10 123 syl φ y E I y I
125 124 biimpar φ y I y E I
126 ovexd φ F supp V
127 39 simpld φ E We supp F
128 5 oiiso F supp V E We supp F G Isom E , E dom G F supp
129 126 127 128 syl2anc φ G Isom E , E dom G F supp
130 129 adantr φ y I G Isom E , E dom G F supp
131 5 oicl Ord dom G
132 ordelss Ord dom G I dom G I dom G
133 131 10 132 sylancr φ I dom G
134 133 sselda φ y I y dom G
135 10 adantr φ y I I dom G
136 isorel G Isom E , E dom G F supp y dom G I dom G y E I G y E G I
137 130 134 135 136 syl12anc φ y I y E I G y E G I
138 125 137 mpbid φ y I G y E G I
139 fvex G I V
140 139 epeli G y E G I G y G I
141 138 140 sylib φ y I G y G I
142 141 ralrimiva φ y I G y G I
143 ffun G : dom G F supp Fun G
144 26 143 ax-mp Fun G
145 funimass4 Fun G I dom G G I G I y I G y G I
146 144 133 145 sylancr φ G I G I y I G y G I
147 142 146 mpbird φ G I G I
148 13 a1i A On F S I suc dom G G I On G I G I ω On
149 simpll A On F S I suc dom G G I On G I G I A On
150 simplr A On F S I suc dom G G I On G I G I F S
151 peano1 ω
152 151 a1i A On F S I suc dom G G I On G I G I ω
153 simpr1 A On F S I suc dom G G I On G I G I I suc dom G
154 simpr2 A On F S I suc dom G G I On G I G I G I On
155 simpr3 A On F S I suc dom G G I On G I G I G I G I
156 1 148 149 5 150 116 152 153 154 155 cantnflt A On F S I suc dom G G I On G I G I H I ω 𝑜 G I
157 2 21 122 31 147 156 syl23anc φ H I ω 𝑜 G I
158 24 ffnd φ F Fn A
159 0ex V
160 159 a1i φ V
161 elsuppfn F Fn A A On V G I supp F G I A F G I
162 158 2 160 161 syl3anc φ G I supp F G I A F G I
163 simpr G I A F G I F G I
164 162 163 syl6bi φ G I supp F F G I
165 28 164 mpd φ F G I
166 on0eln0 F G I On F G I F G I
167 36 166 syl φ F G I F G I
168 165 167 mpbird φ F G I
169 omword1 ω 𝑜 G I On F G I On F G I ω 𝑜 G I ω 𝑜 G I 𝑜 F G I
170 33 36 168 169 syl21anc φ ω 𝑜 G I ω 𝑜 G I 𝑜 F G I
171 oaabs2 H I ω 𝑜 G I ω 𝑜 G I 𝑜 F G I On ω 𝑜 G I ω 𝑜 G I 𝑜 F G I H I + 𝑜 ω 𝑜 G I 𝑜 F G I = ω 𝑜 G I 𝑜 F G I
172 157 38 170 171 syl21anc φ H I + 𝑜 ω 𝑜 G I 𝑜 F G I = ω 𝑜 G I 𝑜 F G I
173 172 f1oeq3d φ T suc I : H suc I 1-1 onto H I + 𝑜 ω 𝑜 G I 𝑜 F G I T suc I : H suc I 1-1 onto ω 𝑜 G I 𝑜 F G I
174 120 173 mpbid φ T suc I : H suc I 1-1 onto ω 𝑜 G I 𝑜 F G I