Metamath Proof Explorer


Theorem cnfdmsn

Description: A function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion cnfdmsn A V B W x A B 𝒫 A Cn 𝒫 B

Proof

Step Hyp Ref Expression
1 fmptsnxp A V B W x A B = A × B
2 snex A V
3 distopon A V 𝒫 A TopOn A
4 2 3 mp1i A V B W 𝒫 A TopOn A
5 snex B V
6 distopon B V 𝒫 B TopOn B
7 5 6 mp1i A V B W 𝒫 B TopOn B
8 snidg B W B B
9 8 adantl A V B W B B
10 cnconst2 𝒫 A TopOn A 𝒫 B TopOn B B B A × B 𝒫 A Cn 𝒫 B
11 4 7 9 10 syl3anc A V B W A × B 𝒫 A Cn 𝒫 B
12 1 11 eqeltrd A V B W x A B 𝒫 A Cn 𝒫 B