Metamath Proof Explorer


Theorem cnfex

Description: The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Assertion cnfex J Top K Top J Cn K V

Proof

Step Hyp Ref Expression
1 eqid J = J
2 1 jctr J Top J Top J = J
3 istopon J TopOn J J Top J = J
4 2 3 sylibr J Top J TopOn J
5 eqid K = K
6 5 jctr K Top K Top K = K
7 istopon K TopOn K K Top K = K
8 6 7 sylibr K Top K TopOn K
9 cnfval J TopOn J K TopOn K J Cn K = f K J | y K f -1 y J
10 4 8 9 syl2an J Top K Top J Cn K = f K J | y K f -1 y J
11 uniexg K Top K V
12 uniexg J Top J V
13 mapvalg K V J V K J = f | f : J K
14 11 12 13 syl2anr J Top K Top K J = f | f : J K
15 mapex J V K V f | f : J K V
16 12 11 15 syl2an J Top K Top f | f : J K V
17 14 16 eqeltrd J Top K Top K J V
18 rabexg K J V f K J | y K f -1 y J V
19 17 18 syl J Top K Top f K J | y K f -1 y J V
20 10 19 eqeltrd J Top K Top J Cn K V