Metamath Proof Explorer


Theorem cnfld1

Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014) Avoid ax-mulf . (Revised by GG, 31-Mar-2025)

Ref Expression
Assertion cnfld1 1 = 1 fld

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 ovmpot 1 x 1 u , v u v x = 1 x
3 2 eqcomd 1 x 1 x = 1 u , v u v x
4 1 3 mpan x 1 x = 1 u , v u v x
5 mullid x 1 x = x
6 4 5 eqtr3d x 1 u , v u v x = x
7 ovmpot x 1 x u , v u v 1 = x 1
8 1 7 mpan2 x x u , v u v 1 = x 1
9 mulrid x x 1 = x
10 8 9 eqtrd x x u , v u v 1 = x
11 6 10 jca x 1 u , v u v x = x x u , v u v 1 = x
12 11 rgen x 1 u , v u v x = x x u , v u v 1 = x
13 1 12 pm3.2i 1 x 1 u , v u v x = x x u , v u v 1 = x
14 cnring fld Ring
15 cnfldbas = Base fld
16 mpocnfldmul u , v u v = fld
17 eqid 1 fld = 1 fld
18 15 16 17 isringid fld Ring 1 x 1 u , v u v x = x x u , v u v 1 = x 1 fld = 1
19 14 18 ax-mp 1 x 1 u , v u v x = x x u , v u v 1 = x 1 fld = 1
20 13 19 mpbi 1 fld = 1
21 20 eqcomi 1 = 1 fld