Metamath Proof Explorer


Theorem cnfldadd

Description: The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 6-Oct-2015) (Revised by Thierry Arnoux, 17-Dec-2017) Revise df-cnfld . (Revised by GG, 27-Apr-2025)

Ref Expression
Assertion cnfldadd + = + fld

Proof

Step Hyp Ref Expression
1 ax-addf + : ×
2 ffn + : × + Fn ×
3 1 2 ax-mp + Fn ×
4 fnov + Fn × + = x , y x + y
5 3 4 mpbi + = x , y x + y
6 mpocnfldadd x , y x + y = + fld
7 5 6 eqtri + = + fld