Metamath Proof Explorer


Theorem cnfldcusp

Description: The field of complex numbers is a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017)

Ref Expression
Assertion cnfldcusp fld CUnifSp

Proof

Step Hyp Ref Expression
1 0cn 0
2 1 ne0ii
3 cncms fld CMetSp
4 eqid UnifSt fld = UnifSt fld
5 4 cnflduss UnifSt fld = metUnif abs
6 cnfldbas = Base fld
7 absf abs :
8 subf : ×
9 fco abs : : × abs : ×
10 7 8 9 mp2an abs : ×
11 ffn abs : × abs Fn ×
12 fnresdm abs Fn × abs × = abs
13 10 11 12 mp2b abs × = abs
14 cnfldds abs = dist fld
15 14 reseq1i abs × = dist fld ×
16 13 15 eqtr3i abs = dist fld ×
17 6 16 4 cmetcusp1 fld CMetSp UnifSt fld = metUnif abs fld CUnifSp
18 2 3 5 17 mp3an fld CUnifSp