Metamath Proof Explorer


Theorem cnfldex

Description: The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 14-Aug-2015) (Revised by Thierry Arnoux, 17-Dec-2017) Avoid complex number axioms and ax-pow . (Revised by GG, 16-Mar-2025)

Ref Expression
Assertion cnfldex fld V

Proof

Step Hyp Ref Expression
1 df-cnfld fld = Base ndx + ndx x , y x + y ndx x , y x y * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
2 tpex Base ndx + ndx x , y x + y ndx x , y x y V
3 snex * ndx * V
4 2 3 unex Base ndx + ndx x , y x + y ndx x , y x y * ndx * V
5 tpex TopSet ndx MetOpen abs ndx dist ndx abs V
6 snex UnifSet ndx metUnif abs V
7 5 6 unex TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs V
8 4 7 unex Base ndx + ndx x , y x + y ndx x , y x y * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs V
9 1 8 eqeltri fld V