Metamath Proof Explorer


Theorem cnfldexp

Description: The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Assertion cnfldexp A B 0 B mulGrp fld A = A B

Proof

Step Hyp Ref Expression
1 oveq1 x = 0 x mulGrp fld A = 0 mulGrp fld A
2 oveq2 x = 0 A x = A 0
3 1 2 eqeq12d x = 0 x mulGrp fld A = A x 0 mulGrp fld A = A 0
4 3 imbi2d x = 0 A x mulGrp fld A = A x A 0 mulGrp fld A = A 0
5 oveq1 x = y x mulGrp fld A = y mulGrp fld A
6 oveq2 x = y A x = A y
7 5 6 eqeq12d x = y x mulGrp fld A = A x y mulGrp fld A = A y
8 7 imbi2d x = y A x mulGrp fld A = A x A y mulGrp fld A = A y
9 oveq1 x = y + 1 x mulGrp fld A = y + 1 mulGrp fld A
10 oveq2 x = y + 1 A x = A y + 1
11 9 10 eqeq12d x = y + 1 x mulGrp fld A = A x y + 1 mulGrp fld A = A y + 1
12 11 imbi2d x = y + 1 A x mulGrp fld A = A x A y + 1 mulGrp fld A = A y + 1
13 oveq1 x = B x mulGrp fld A = B mulGrp fld A
14 oveq2 x = B A x = A B
15 13 14 eqeq12d x = B x mulGrp fld A = A x B mulGrp fld A = A B
16 15 imbi2d x = B A x mulGrp fld A = A x A B mulGrp fld A = A B
17 eqid mulGrp fld = mulGrp fld
18 cnfldbas = Base fld
19 17 18 mgpbas = Base mulGrp fld
20 cnfld1 1 = 1 fld
21 17 20 ringidval 1 = 0 mulGrp fld
22 eqid mulGrp fld = mulGrp fld
23 19 21 22 mulg0 A 0 mulGrp fld A = 1
24 exp0 A A 0 = 1
25 23 24 eqtr4d A 0 mulGrp fld A = A 0
26 oveq1 y mulGrp fld A = A y y mulGrp fld A A = A y A
27 cnring fld Ring
28 17 ringmgp fld Ring mulGrp fld Mnd
29 27 28 ax-mp mulGrp fld Mnd
30 cnfldmul × = fld
31 17 30 mgpplusg × = + mulGrp fld
32 19 22 31 mulgnn0p1 mulGrp fld Mnd y 0 A y + 1 mulGrp fld A = y mulGrp fld A A
33 29 32 mp3an1 y 0 A y + 1 mulGrp fld A = y mulGrp fld A A
34 33 ancoms A y 0 y + 1 mulGrp fld A = y mulGrp fld A A
35 expp1 A y 0 A y + 1 = A y A
36 34 35 eqeq12d A y 0 y + 1 mulGrp fld A = A y + 1 y mulGrp fld A A = A y A
37 26 36 syl5ibr A y 0 y mulGrp fld A = A y y + 1 mulGrp fld A = A y + 1
38 37 expcom y 0 A y mulGrp fld A = A y y + 1 mulGrp fld A = A y + 1
39 38 a2d y 0 A y mulGrp fld A = A y A y + 1 mulGrp fld A = A y + 1
40 4 8 12 16 25 39 nn0ind B 0 A B mulGrp fld A = A B
41 40 impcom A B 0 B mulGrp fld A = A B