Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
|
oveq2 |
|
3 |
1 2
|
eqeq12d |
|
4 |
3
|
imbi2d |
|
5 |
|
oveq1 |
|
6 |
|
oveq2 |
|
7 |
5 6
|
eqeq12d |
|
8 |
7
|
imbi2d |
|
9 |
|
oveq1 |
|
10 |
|
oveq2 |
|
11 |
9 10
|
eqeq12d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq1 |
|
14 |
|
oveq2 |
|
15 |
13 14
|
eqeq12d |
|
16 |
15
|
imbi2d |
|
17 |
|
eqid |
|
18 |
|
cnfldbas |
|
19 |
17 18
|
mgpbas |
|
20 |
|
cnfld1 |
|
21 |
17 20
|
ringidval |
|
22 |
|
eqid |
|
23 |
19 21 22
|
mulg0 |
|
24 |
|
exp0 |
|
25 |
23 24
|
eqtr4d |
|
26 |
|
oveq1 |
|
27 |
|
cnring |
|
28 |
17
|
ringmgp |
|
29 |
27 28
|
ax-mp |
|
30 |
|
cnfldmul |
|
31 |
17 30
|
mgpplusg |
|
32 |
19 22 31
|
mulgnn0p1 |
|
33 |
29 32
|
mp3an1 |
|
34 |
33
|
ancoms |
|
35 |
|
expp1 |
|
36 |
34 35
|
eqeq12d |
|
37 |
26 36
|
syl5ibr |
|
38 |
37
|
expcom |
|
39 |
38
|
a2d |
|
40 |
4 8 12 16 25 39
|
nn0ind |
|
41 |
40
|
impcom |
|