Metamath Proof Explorer


Theorem cnfldfun

Description: The field of complex numbers is a function. The proof is much shorter than the proof of cnfldfunALT by using cnfldstr and structn0fun : in addition, it must be shown that (/) e/ CCfld . (Contributed by AV, 18-Nov-2021) Revise df-cnfld . (Revised by GG, 31-Mar-2025)

Ref Expression
Assertion cnfldfun Fun fld

Proof

Step Hyp Ref Expression
1 cnfldstr fld Struct 1 13
2 structn0fun fld Struct 1 13 Fun fld
3 fvex Base ndx V
4 cnex V
5 3 4 opnzi Base ndx
6 5 nesymi ¬ = Base ndx
7 fvex + ndx V
8 mpoaddex u , v u + v V
9 7 8 opnzi + ndx u , v u + v
10 9 nesymi ¬ = + ndx u , v u + v
11 fvex ndx V
12 mpomulex u , v u v V
13 11 12 opnzi ndx u , v u v
14 13 nesymi ¬ = ndx u , v u v
15 3ioran ¬ = Base ndx = + ndx u , v u + v = ndx u , v u v ¬ = Base ndx ¬ = + ndx u , v u + v ¬ = ndx u , v u v
16 0ex V
17 16 eltp Base ndx + ndx u , v u + v ndx u , v u v = Base ndx = + ndx u , v u + v = ndx u , v u v
18 15 17 xchnxbir ¬ Base ndx + ndx u , v u + v ndx u , v u v ¬ = Base ndx ¬ = + ndx u , v u + v ¬ = ndx u , v u v
19 6 10 14 18 mpbir3an ¬ Base ndx + ndx u , v u + v ndx u , v u v
20 fvex * ndx V
21 cjf * :
22 fex * : V * V
23 21 4 22 mp2an * V
24 20 23 opnzi * ndx *
25 24 necomi * ndx *
26 nelsn * ndx * ¬ * ndx *
27 25 26 ax-mp ¬ * ndx *
28 19 27 pm3.2i ¬ Base ndx + ndx u , v u + v ndx u , v u v ¬ * ndx *
29 fvex TopSet ndx V
30 fvex MetOpen abs V
31 29 30 opnzi TopSet ndx MetOpen abs
32 31 nesymi ¬ = TopSet ndx MetOpen abs
33 fvex ndx V
34 letsr TosetRel
35 34 elexi V
36 33 35 opnzi ndx
37 36 nesymi ¬ = ndx
38 fvex dist ndx V
39 absf abs :
40 fex abs : V abs V
41 39 4 40 mp2an abs V
42 subf : ×
43 4 4 xpex × V
44 fex : × × V V
45 42 43 44 mp2an V
46 41 45 coex abs V
47 38 46 opnzi dist ndx abs
48 47 nesymi ¬ = dist ndx abs
49 32 37 48 3pm3.2ni ¬ = TopSet ndx MetOpen abs = ndx = dist ndx abs
50 16 eltp TopSet ndx MetOpen abs ndx dist ndx abs = TopSet ndx MetOpen abs = ndx = dist ndx abs
51 49 50 mtbir ¬ TopSet ndx MetOpen abs ndx dist ndx abs
52 fvex UnifSet ndx V
53 fvex metUnif abs V
54 52 53 opnzi UnifSet ndx metUnif abs
55 54 necomi UnifSet ndx metUnif abs
56 nelsn UnifSet ndx metUnif abs ¬ UnifSet ndx metUnif abs
57 55 56 ax-mp ¬ UnifSet ndx metUnif abs
58 51 57 pm3.2i ¬ TopSet ndx MetOpen abs ndx dist ndx abs ¬ UnifSet ndx metUnif abs
59 28 58 pm3.2i ¬ Base ndx + ndx u , v u + v ndx u , v u v ¬ * ndx * ¬ TopSet ndx MetOpen abs ndx dist ndx abs ¬ UnifSet ndx metUnif abs
60 ioran ¬ Base ndx + ndx u , v u + v ndx u , v u v * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs ¬ Base ndx + ndx u , v u + v ndx u , v u v * ndx * ¬ TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
61 ioran ¬ Base ndx + ndx u , v u + v ndx u , v u v * ndx * ¬ Base ndx + ndx u , v u + v ndx u , v u v ¬ * ndx *
62 ioran ¬ TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs ¬ TopSet ndx MetOpen abs ndx dist ndx abs ¬ UnifSet ndx metUnif abs
63 61 62 anbi12i ¬ Base ndx + ndx u , v u + v ndx u , v u v * ndx * ¬ TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs ¬ Base ndx + ndx u , v u + v ndx u , v u v ¬ * ndx * ¬ TopSet ndx MetOpen abs ndx dist ndx abs ¬ UnifSet ndx metUnif abs
64 60 63 bitri ¬ Base ndx + ndx u , v u + v ndx u , v u v * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs ¬ Base ndx + ndx u , v u + v ndx u , v u v ¬ * ndx * ¬ TopSet ndx MetOpen abs ndx dist ndx abs ¬ UnifSet ndx metUnif abs
65 59 64 mpbir ¬ Base ndx + ndx u , v u + v ndx u , v u v * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
66 df-cnfld fld = Base ndx + ndx u , v u + v ndx u , v u v * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
67 66 eleq2i fld Base ndx + ndx u , v u + v ndx u , v u v * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
68 elun Base ndx + ndx u , v u + v ndx u , v u v * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs Base ndx + ndx u , v u + v ndx u , v u v * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
69 elun Base ndx + ndx u , v u + v ndx u , v u v * ndx * Base ndx + ndx u , v u + v ndx u , v u v * ndx *
70 elun TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
71 69 70 orbi12i Base ndx + ndx u , v u + v ndx u , v u v * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs Base ndx + ndx u , v u + v ndx u , v u v * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
72 67 68 71 3bitri fld Base ndx + ndx u , v u + v ndx u , v u v * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
73 65 72 mtbir ¬ fld
74 disjsn fld = ¬ fld
75 73 74 mpbir fld =
76 disjdif2 fld = fld = fld
77 75 76 ax-mp fld = fld
78 77 funeqi Fun fld Fun fld
79 2 78 sylib fld Struct 1 13 Fun fld
80 1 79 ax-mp Fun fld