| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfldstr |
|
| 2 |
|
structn0fun |
|
| 3 |
|
fvex |
|
| 4 |
|
cnex |
|
| 5 |
3 4
|
opnzi |
|
| 6 |
5
|
nesymi |
|
| 7 |
|
fvex |
|
| 8 |
|
mpoaddex |
|
| 9 |
7 8
|
opnzi |
|
| 10 |
9
|
nesymi |
|
| 11 |
|
fvex |
|
| 12 |
|
mpomulex |
|
| 13 |
11 12
|
opnzi |
|
| 14 |
13
|
nesymi |
|
| 15 |
|
3ioran |
|
| 16 |
|
0ex |
|
| 17 |
16
|
eltp |
|
| 18 |
15 17
|
xchnxbir |
|
| 19 |
6 10 14 18
|
mpbir3an |
|
| 20 |
|
fvex |
|
| 21 |
|
cjf |
|
| 22 |
|
fex |
|
| 23 |
21 4 22
|
mp2an |
|
| 24 |
20 23
|
opnzi |
|
| 25 |
24
|
necomi |
|
| 26 |
|
nelsn |
|
| 27 |
25 26
|
ax-mp |
|
| 28 |
19 27
|
pm3.2i |
|
| 29 |
|
fvex |
|
| 30 |
|
fvex |
|
| 31 |
29 30
|
opnzi |
|
| 32 |
31
|
nesymi |
|
| 33 |
|
fvex |
|
| 34 |
|
letsr |
|
| 35 |
34
|
elexi |
|
| 36 |
33 35
|
opnzi |
|
| 37 |
36
|
nesymi |
|
| 38 |
|
fvex |
|
| 39 |
|
absf |
|
| 40 |
|
fex |
|
| 41 |
39 4 40
|
mp2an |
|
| 42 |
|
subf |
|
| 43 |
4 4
|
xpex |
|
| 44 |
|
fex |
|
| 45 |
42 43 44
|
mp2an |
|
| 46 |
41 45
|
coex |
|
| 47 |
38 46
|
opnzi |
|
| 48 |
47
|
nesymi |
|
| 49 |
32 37 48
|
3pm3.2ni |
|
| 50 |
16
|
eltp |
|
| 51 |
49 50
|
mtbir |
|
| 52 |
|
fvex |
|
| 53 |
|
fvex |
|
| 54 |
52 53
|
opnzi |
|
| 55 |
54
|
necomi |
|
| 56 |
|
nelsn |
|
| 57 |
55 56
|
ax-mp |
|
| 58 |
51 57
|
pm3.2i |
|
| 59 |
28 58
|
pm3.2i |
|
| 60 |
|
ioran |
|
| 61 |
|
ioran |
|
| 62 |
|
ioran |
|
| 63 |
61 62
|
anbi12i |
|
| 64 |
60 63
|
bitri |
|
| 65 |
59 64
|
mpbir |
|
| 66 |
|
df-cnfld |
|
| 67 |
66
|
eleq2i |
|
| 68 |
|
elun |
|
| 69 |
|
elun |
|
| 70 |
|
elun |
|
| 71 |
69 70
|
orbi12i |
|
| 72 |
67 68 71
|
3bitri |
|
| 73 |
65 72
|
mtbir |
|
| 74 |
|
disjsn |
|
| 75 |
73 74
|
mpbir |
|
| 76 |
|
disjdif2 |
|
| 77 |
75 76
|
ax-mp |
|
| 78 |
77
|
funeqi |
|
| 79 |
2 78
|
sylib |
|
| 80 |
1 79
|
ax-mp |
|