Metamath Proof Explorer


Theorem cnfldhaus

Description: The topology of the complex numbers is Hausdorff. (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypothesis cnfldtopn.1 J = TopOpen fld
Assertion cnfldhaus J Haus

Proof

Step Hyp Ref Expression
1 cnfldtopn.1 J = TopOpen fld
2 cnxmet abs ∞Met
3 1 cnfldtopn J = MetOpen abs
4 3 methaus abs ∞Met J Haus
5 2 4 ax-mp J Haus