Metamath Proof Explorer


Theorem cnfldms

Description: The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Assertion cnfldms fld MetSp

Proof

Step Hyp Ref Expression
1 cnmet abs Met
2 eqid MetOpen abs = MetOpen abs
3 cnxmet abs ∞Met
4 2 mopntopon abs ∞Met MetOpen abs TopOn
5 cnfldbas = Base fld
6 cnfldtset MetOpen abs = TopSet fld
7 5 6 topontopn MetOpen abs TopOn MetOpen abs = TopOpen fld
8 3 4 7 mp2b MetOpen abs = TopOpen fld
9 absf abs :
10 subf : ×
11 fco abs : : × abs : ×
12 9 10 11 mp2an abs : ×
13 ffn abs : × abs Fn ×
14 fnresdm abs Fn × abs × = abs
15 12 13 14 mp2b abs × = abs
16 cnfldds abs = dist fld
17 16 reseq1i abs × = dist fld ×
18 15 17 eqtr3i abs = dist fld ×
19 8 5 18 isms2 fld MetSp abs Met MetOpen abs = MetOpen abs
20 1 2 19 mpbir2an fld MetSp